1
|
Suranjika S, Barla P, Sharma N, Dey N. A review on ubiquitin ligases: Orchestrators of plant resilience in adversity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112180. [PMID: 38964613 DOI: 10.1016/j.plantsci.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Ubiquitin- proteasome system (UPS) is universally present in plants and animals, mediating many cellular processes needed for growth and development. Plants constantly defend themselves against endogenous and exogenous stimuli such as hormonal signaling, biotic stresses such as viruses, fungi, nematodes, and abiotic stresses like drought, heat, and salinity by developing complex regulatory mechanisms. Ubiquitination is a regulatory mechanism involving selective elimination and stabilization of regulatory proteins through the UPS system where E3 ligases play a central role; they can bind to the targets in a substrate-specific manner, followed by poly-ubiquitylation, and subsequent protein degradation by 26 S proteasome. Increasing evidence suggests different types of E3 ligases play important roles in plant development and stress adaptation. Herein, we summarize recent advances in understanding the regulatory roles of different E3 ligases and primarily focus on protein ubiquitination in plant-environment interactions. It also highlights the diversity and complexity of these metabolic pathways that enable plant to survive under challenging conditions. This reader-friendly review provides a comprehensive overview of E3 ligases and their substrates associated with abiotic and biotic stresses that could be utilized for future crop improvement.
Collapse
Affiliation(s)
- Sandhya Suranjika
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India; Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), KIIT Road, Patia, Bhubaneswar, Odisha, India
| | - Preeti Barla
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India
| | - Namisha Sharma
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India
| | - Nrisingha Dey
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India.
| |
Collapse
|
2
|
Ding H, Li X, Zhuge S, Du J, Wu M, Li W, Li Y, Ma H, Zhang P, Wang X, Lv G, Zhang Z, Qiu F. Genome-Wide Identification and Functional Analysis of the Genes of the ATL Family in Maize during High-Temperature Stress in Maize. Genes (Basel) 2024; 15:1106. [PMID: 39202465 PMCID: PMC11353701 DOI: 10.3390/genes15081106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Maize is a significant food and feed product, and abiotic stress significantly impacts its growth and development. Arabidopsis Toxicosa en Levadura (ATL), a member of the RING-H2 E3 subfamily, modulates various physiological processes and stress responses in Arabidopsis. However, the role of ATL in maize remains unexplored. In this study, we systematically identified the genes encoding ATL in the maize genome. The results showed that the maize ATL family consists of 77 members, all predicted to be located in the cell membrane and cytoplasm, with a highly conserved RING domain. Tissue-specific expression analysis revealed that the expression levels of ATL family genes were significantly different in different tissues. Examination of the abiotic stress data revealed that the expression levels of ATL genes fluctuated significantly under different stress conditions. To further understand the biological functions of maize ATL family genes under high-temperature stress, we studied the high-temperature phenotypes of the maize ZmATL family gene ZmATL10 and its homologous gene AtATL27 in Arabidopsis. The results showed that overexpression of the ZmATL10 and AtATL27 genes enhanced resistance to high-temperature stress.
Collapse
Affiliation(s)
- Haiping Ding
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (H.D.); (G.L.)
| | - Xiaohu Li
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (X.L.); (S.Z.); (J.D.); (M.W.); (W.L.); (Y.L.); (H.M.); (P.Z.); (X.W.)
| | - Shilin Zhuge
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (X.L.); (S.Z.); (J.D.); (M.W.); (W.L.); (Y.L.); (H.M.); (P.Z.); (X.W.)
| | - Jiyuan Du
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (X.L.); (S.Z.); (J.D.); (M.W.); (W.L.); (Y.L.); (H.M.); (P.Z.); (X.W.)
| | - Min Wu
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (X.L.); (S.Z.); (J.D.); (M.W.); (W.L.); (Y.L.); (H.M.); (P.Z.); (X.W.)
| | - Wenlong Li
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (X.L.); (S.Z.); (J.D.); (M.W.); (W.L.); (Y.L.); (H.M.); (P.Z.); (X.W.)
| | - Yujing Li
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (X.L.); (S.Z.); (J.D.); (M.W.); (W.L.); (Y.L.); (H.M.); (P.Z.); (X.W.)
| | - Haoran Ma
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (X.L.); (S.Z.); (J.D.); (M.W.); (W.L.); (Y.L.); (H.M.); (P.Z.); (X.W.)
| | - Peng Zhang
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (X.L.); (S.Z.); (J.D.); (M.W.); (W.L.); (Y.L.); (H.M.); (P.Z.); (X.W.)
| | - Xingyu Wang
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (X.L.); (S.Z.); (J.D.); (M.W.); (W.L.); (Y.L.); (H.M.); (P.Z.); (X.W.)
| | - Guihua Lv
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (H.D.); (G.L.)
- Zhejiang Academy of Agricultural Sciences, Institute of Maize and Featured Upland Crops, Hangzhou 310015, China
| | - Zhiming Zhang
- National Key Laboratory of Wheat Breeding, College of Life Sciences, Shandong Agricultural University, Taian 271018, China; (X.L.); (S.Z.); (J.D.); (M.W.); (W.L.); (Y.L.); (H.M.); (P.Z.); (X.W.)
| | - Fazhan Qiu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; (H.D.); (G.L.)
| |
Collapse
|
3
|
Dabravolski SA, Isayenkov SV. The Role of Plant Ubiquitin-like Modifiers in the Formation of Salt Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1468. [PMID: 38891277 PMCID: PMC11174624 DOI: 10.3390/plants13111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
The climate-driven challenges facing Earth necessitate a comprehensive understanding of the mechanisms facilitating plant resilience to environmental stressors. This review delves into the crucial role of ubiquitin-like modifiers, particularly focusing on ATG8-mediated autophagy, in bolstering plant tolerance to salt stress. Synthesising recent research, we unveil the multifaceted contributions of ATG8 to plant adaptation mechanisms amidst salt stress conditions, including stomatal regulation, photosynthetic efficiency, osmotic adjustment, and antioxidant defence. Furthermore, we elucidate the interconnectedness of autophagy with key phytohormone signalling pathways, advocating for further exploration into their molecular mechanisms. Our findings underscore the significance of understanding molecular mechanisms underlying ubiquitin-based protein degradation systems and autophagy in salt stress tolerance, offering valuable insights for designing innovative strategies to improve crop productivity and ensure global food security amidst increasing soil salinisation. By harnessing the potential of autophagy and other molecular mechanisms, we can foster sustainable agricultural practices and develop stress-tolerant crops resilient to salt stress.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel;
| | - Stanislav V. Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse 3, 06120 Halle, Germany
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Baidi-Vyshneveckogo Str. 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
4
|
Qin F, Shui G, Li Z, Tu M, Zang X. Expression Profiling Reveals the Possible Involvement of the Ubiquitin-Proteasome Pathway in Abiotic Stress Regulation in Gracilariopsis lemaneiformis. Int J Mol Sci 2023; 24:12313. [PMID: 37569689 PMCID: PMC10418974 DOI: 10.3390/ijms241512313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/16/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Gracilariopsis lemaneiformis is an economically important red macroalga, the cultivation of which is affected by abiotic stresses. This research intends to study the response mechanism of various components of the ubiquitin-protease pathway to abiotic stress in G. lemaneiformis. The algae were treated with five common external stresses (high temperature, low temperature, O3, PEG, and water shortage) to study the macroscopic and microscopic manifestations of the ubiquitin-proteasome pathway. Firstly, the changes in soluble protein and ubiquitin were detected during the five treatments, and the results showed that the content of soluble protein and ubiquitin significantly increased under most stresses. The content of the soluble protein increased the most on the second day after 20% PEG treatment, which was 1.38 times higher than that of the control group, and the content of ubiquitin increased the most 30 min after water shortage treatment, which was 3.6 times higher than that of the control group. Then, 12 key genes (E1, E2, UPL1, HRD1, UFD1, Cul3, Cul4, DDB2, PIAS1, FZR1, APC8, and COP1) of the ubiquitin-proteasome pathway were studied, including an estimation of the probably regulatory elements in putative promoter regions and an analysis of transcript levels. The results showed that CAAT box, LTR, GC motif, and MBS elements were present in the putative promoter regions, which might have endowed the genes with the ability to respond to stress. The transcript analysis showed that under high temperature, low temperature, PEG, O3, and water shortage, all of the genes exhibited instant and significant up-regulation, and different genes had different response levels to different stresses. Many of them also showed the synergistic effect of transcript up-regulation under various stress treatments. In particular, E1, E2, Cul3, Cul4, UPL1, HRD1, and COP1 performed most significantly under the five stresses. Collectively, our exploration of the ubiquitin-proteasome pathway and the transcript levels of key genes suggest a significant role to cope with adversity, and potential candidate genes can be selected for transformation to obtain stress-resistant strains.
Collapse
Affiliation(s)
| | | | | | | | - Xiaonan Zang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China; (F.Q.); (G.S.); (Z.L.); (M.T.)
| |
Collapse
|
5
|
UPL5 modulates WHY2 protein distribution in a Kub-site dependent ubiquitination in response to [Ca2+]cyt-induced leaf senescence. iScience 2023; 26:106216. [PMID: 36994183 PMCID: PMC10040967 DOI: 10.1016/j.isci.2023.106216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/08/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
The translocation of proteins between various compartments of cells is the simplest and most direct way of an/retrograde communication. However, the mechanism of protein trafficking is far understood. In this study, we showed that the alteration of WHY2 protein abundance in various compartments of cells was dependent on a HECT-type ubiquitin E3 ligase UPL5 interacting with WHY2 in the cytoplasm, plastid, and nucleus, as well as mitochondrion to selectively ubiquitinate various Kub-sites (Kub 45 and Kub 227) of WHY2. Plastid genome stability can be maintained by the UPL5-WHY2 module, accompany by the alteration of photosystem activity and senescence-associated gene expression. In addition, the specificity of UPL5 ubiquitinating various Kub-sites of WHY2 was responded to cold or CaCl2 stress, in a dose [Ca2+]cyt-dependent manner. This demonstrates the integration of the UPL5 ubiquitination with the regulation of WHY2 distribution and retrograde communication between organelle and nuclear events of leaf senescence.
Collapse
|
6
|
Zhang Y, Li Y, Zhang Y, Zhang Z, Zhang D, Wang X, Lai B, Huang D, Gu L, Xie Y, Miao Y. Genome-wide H3K9 acetylation level increases with age-dependent senescence of flag leaf in rice. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4696-4715. [PMID: 35429161 DOI: 10.1093/jxb/erac155] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Flag leaf senescence is an important biological process that drives the remobilization of nutrients to the growing organs of rice. Leaf senescence is controlled by genetic information via gene expression and histone modification, but the precise mechanism is as yet unclear. Here, we analysed genome-wide acetylated lysine residue 9 of histone H3 (H3K9ac) enrichment by chromatin immunoprecipitation-sequencing (ChIP-seq), and examined its association with transcriptomes by RNA-seq during flag leaf aging in rice (Oryza sativa). We found that genome-wide H3K9 acetylation levels increased with age-dependent senescence in rice flag leaf, and there was a positive correlation between the density and breadth of H3K9ac with gene expression and transcript elongation. During flag leaf aging, we observed 1249 up-regulated differentially expressed genes (DEGs) and 996 down-regulated DEGs, showing a strong relationship between temporal changes in gene expression and gain/loss of H3K9ac. We produced a landscape of H3K9 acetylation-modified gene expression targets that include known senescence-associated genes, metabolism-related genes, as well as miRNA biosynthesis-related genes. Our findings reveal a complex regulatory network of metabolism- and senescence-related pathways mediated by H3K9ac, and elucidate patterns of H3K9ac-mediated regulation of gene expression during flag leaf aging in rice.
Collapse
Affiliation(s)
- Yu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanyun Li
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuanyuan Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zeyu Zhang
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Deyu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaonan Wang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Binfan Lai
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dandan Huang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yakun Xie
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
7
|
Wang Z, Spoel SH. HECT ubiquitin ligases as accessory proteins of the plant proteasome. Essays Biochem 2022; 66:135-145. [PMID: 35635104 PMCID: PMC9400063 DOI: 10.1042/ebc20210064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 12/31/2022]
Abstract
The proteasome plays vital roles in eukaryotic cells by orchestrating the regulated degradation of large repertoires of substrates involved in numerous biological processes. Proteasome dysfunction is associated with a wide variety of human pathologies and in plants severely affects growth, development and responses to stress. The activity of E3 ubiquitin ligases marks proteins fated for degradation with chains of the post-translational modifier, ubiquitin. Proteasomal processing of ubiquitinated substrates involves ubiquitin chain recognition, deubiquitination, ATP-mediated unfolding and translocation, and proteolytic digestion. This complex series of steps is made possible not only by the many specialised subunits of the 1.5 MDa proteasome complex but also by a range of accessory proteins that are recruited to the proteasome. A surprising class of accessory proteins are members of the HECT-type family of ubiquitin ligases that utilise a unique mechanism for post-translational attachment of ubiquitin to their substrates. So why do proteasomes that already contain all the necessary machinery to recognise ubiquitinated substrates, harbour HECT ligase activity? It is now clear that some ubiquitin ligases physically relay their substrates to proteasome-associated HECT ligases, which prevent substrate stalling at the proteasome. Moreover, HECT ligases ubiquitinate proteasome subunits, thereby modifying the proteasome's ability to recognise substrates. They may therefore enable proteasomes to be both non-specific and extraordinarily selective in a complex substrate environment. Understanding the relationship between the proteasome and accessory HECT ligases will reveal how the proteasome controls so many diverse plant developmental and stress responses.
Collapse
Affiliation(s)
- Zhishuo Wang
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Steven H Spoel
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
8
|
Lan W, Ma W, Zheng S, Qiu Y, Zhang H, Lu H, Zhang Y, Miao Y. Ubiquitome profiling reveals a regulatory pattern of UPL3 with UBP12 on metabolic-leaf senescence. Life Sci Alliance 2022; 5:e202201492. [PMID: 35926874 PMCID: PMC9354775 DOI: 10.26508/lsa.202201492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/03/2022] Open
Abstract
The HECT-type UPL3 ligase plays critical roles in plant development and stress protection, but understanding of its regulation remains limited. Here, the multi-omics analyses of ubiquitinated proteins in <i>upl3</i> mutants were performed. A landscape of UPL3-dependent ubiquitinated proteins is constructed: Preferential ubiquitination of proteins related to carbon fixation represented the largest set of proteins with increased ubiquitination in the <i>upl3</i> plant, including most of carbohydrate metabolic enzymes, BRM, and variant histone, whereas a small set of proteins with reduced ubiquitination caused by the <i>upl3</i> mutation were linked to cysteine/methionine synthesis, as well as hexokinase 1 (HXK1) and phosphoenolpyruvate carboxylase 2 (PPC2). Notably, ubiquitin hydrolase 12 (UBP12), BRM, HXK1, and PPC2 were identified as the UPL3-interacting partners in vivo and in vitro. Characterization of <i>brm</i>, <i>upl3</i>, <i>ppc2</i>, <i>gin2</i>, and <i>ubp12</i> mutant plants and proteomic and transcriptomic analysis suggested that UPL3 fine-tunes carbohydrate metabolism, mediating cellular senescence by interacting with UBP12, BRM, HXK1, and PPC2. Our results highlight a regulatory pattern of UPL3 with UBP12 as a hub of regulator on proteolysis-independent regulation and proteolysis-dependent degradation.
Collapse
Affiliation(s)
- Wei Lan
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weibo Ma
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuai Zheng
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuhao Qiu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Han Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Haisen Lu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Zhang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Transcriptome Analysis of Air Space-Type Variegation Formation in Trifolium pratense. Int J Mol Sci 2022; 23:ijms23147794. [PMID: 35887138 PMCID: PMC9322087 DOI: 10.3390/ijms23147794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/04/2023] Open
Abstract
Air space-type variegation is the most diverse among the species of known variegated leaf plants and is caused by conspicuous intercellular spaces between the epidermal and palisade cells and among the palisade cells at non-green areas. Trifolium pratense, a species in Fabaceae with V-shaped air space-type variegation, was selected to explore the application potential of variegated leaf plants and accumulate basic data on the molecular regulatory mechanism and evolutionary history of leaf variegation. We performed comparative transcriptome analysis on young and adult leaflets of variegated and green plants and identified 43 candidate genes related to air space-type variegation formation. Most of the genes were related to cell-wall structure modification (CESA, CSL, EXP, FLA, PG, PGIP, PLL, PME, RGP, SKS, and XTH family genes), followed by photosynthesis (LHCB subfamily, RBCS, GOX, and AGT family genes), redox (2OG and GSH family genes), and nitrogen metabolism (NodGS family genes). Other genes were related to photooxidation, protein interaction, and protease degradation systems. The downregulated expression of light-responsive LHCB subfamily genes and the upregulated expression of the genes involved in cell-wall structure modification were important conditions for air space-type variegation formation in T. pratense. The upregulated expression of the ubiquitin-protein ligase enzyme (E3)-related genes in the protease degradation systems were conducive to air space-type variegation formation. Because these family genes are necessary for plant growth and development, the mechanism of the leaf variegation formation in T. pratense might be a widely existing regulation in air space-type variegation in nature.
Collapse
|
10
|
Ubiquitin ligases at the nexus of plant responses to biotic and abiotic stresses. Essays Biochem 2022; 66:123-133. [PMID: 35704617 DOI: 10.1042/ebc20210070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/11/2022] [Accepted: 05/30/2022] [Indexed: 01/15/2023]
Abstract
Plants must cope with an ever-changing environment, including concurrent biotic and abiotic stresses. The ubiquitin-proteasome system (UPS) is intricately involved in regulating signaling events that facilitate cellular changes required to mitigate the detrimental effects of environmental stress. A key component of the UPS are ubiquitin ligases (or E3s) that catalyze the attachment of ubiquitin molecules to select substrate proteins, which are then recognized by the 26S proteasome for degradation. With the identification of substrate proteins, a growing number of E3s are shown to differentially regulate responses to abiotic as well as bioitic stresses. The review discusses select E3s to illustrate the role of ubiquitin ligases as negative and/or positive regulators of responses to both biotic and abiotic stresses.
Collapse
|
11
|
Lan W, Zheng S, Yang P, Qiu Y, Xu Y, Miao Y. Establishment of a Landscape of UPL5-Ubiquitinated on Multiple Subcellular Components of Leaf Senescence Cell in Arabidopsis. Int J Mol Sci 2022; 23:5754. [PMID: 35628561 PMCID: PMC9145402 DOI: 10.3390/ijms23105754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
Catabolism of macromolecules is a major event in senescent cells, especially involving proteolysis of organelles and abnormally aggregated proteins, circulation of nutrients, and precise control of intracellular environmental balance. Proteasomes are distributed in the nucleus and cytoplasm; however, proteasomes in organelles are limited. In this study, multi-omics proteomic analyses of ubiquitinated proteins enriched by using antibody against "di-Gly-Lys" via a free labeling were used to investigate the global changes of protein levels and ubiquitination modification levels of upl5 mutant relative to wild-type plant; subcellular localization analysis of UPL5 was found to be located in the nucleus, cytoplasm, and plastid within the cell; and the direct lysine site patterns of UPL5 were screened by the H89R substitution in the tagged ubiquitinated assay. It suggests that UPL5 acting as a candidate of organelle E3 ligase either in the nucleus or cytoplasm or plastid modifies numerous targets related to nuclear transcription and plastid photosynthesis involving in Ca2+ and hormone signaling pathway in plant senescence and in response to (a)biotic stress protection.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (W.L.); (S.Z.); (P.Y.); (Y.Q.); (Y.X.)
| |
Collapse
|
12
|
Lan W, Qiu Y, Xu Y, Liu Y, Miao Y. Ubiquitination and Ubiquitin-Like Modifications as Mediators of Alternative Pre-mRNA Splicing in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:869870. [PMID: 35646014 PMCID: PMC9134077 DOI: 10.3389/fpls.2022.869870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
Alternative splicing (AS) is a common post-transcriptional regulatory process in eukaryotes. AS has an irreplaceable role during plant development and in response to environmental stress as it evokes differential expression of downstream genes or splicing factors (e.g., serine/arginine-rich proteins). Numerous studies have reported that loss of AS capacity leads to defects in plant growth and development, and induction of stress-sensitive phenotypes. A role for post-translational modification (PTM) of AS components has emerged in recent years. These modifications are capable of regulating the activity, stability, localization, interaction, and folding of spliceosomal proteins in human cells and yeast, indicating that PTMs represent another layer of AS regulation. In this review, we summarize the recent reports concerning ubiquitin and ubiquitin-like modification of spliceosome components and analyze the relationship between spliceosome and the ubiquitin/26S proteasome pathway in plants. Based on the totality of the evidence presented, we further speculate on the roles of protein ubiquitination mediated AS in plant development and environmental response.
Collapse
|
13
|
Zentgraf U, Andrade AG, Doll J. Editorial for Special Issue "Leaf Senescence" in Plants. PLANTS 2021; 10:plants10081490. [PMID: 34451536 PMCID: PMC8400417 DOI: 10.3390/plants10081490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/13/2023]
|
14
|
Guo Y, Ren G, Zhang K, Li Z, Miao Y, Guo H. Leaf senescence: progression, regulation, and application. MOLECULAR HORTICULTURE 2021; 1:5. [PMID: 37789484 PMCID: PMC10509828 DOI: 10.1186/s43897-021-00006-9] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/11/2021] [Indexed: 05/24/2023]
Abstract
Leaf senescence, the last stage of leaf development, is a type of postmitotic senescence and is characterized by the functional transition from nutrient assimilation to nutrient remobilization which is essential for plants' fitness. The initiation and progression of leaf senescence are regulated by a variety of internal and external factors such as age, phytohormones, and environmental stresses. Significant breakthroughs in dissecting the molecular mechanisms underpinning leaf senescence have benefited from the identification of senescence-altered mutants through forward genetic screening and functional assessment of hundreds of senescence-associated genes (SAGs) via reverse genetic research in model plant Arabidopsis thaliana as well as in crop plants. Leaf senescence involves highly complex genetic programs that are tightly tuned by multiple layers of regulation, including chromatin and transcription regulation, post-transcriptional, translational and post-translational regulation. Due to the significant impact of leaf senescence on photosynthesis, nutrient remobilization, stress responses, and productivity, much effort has been made in devising strategies based on known senescence regulatory mechanisms to manipulate the initiation and progression of leaf senescence, aiming for higher yield, better quality, or improved horticultural performance in crop plants. This review aims to provide an overview of leaf senescence and discuss recent advances in multi-dimensional regulation of leaf senescence from genetic and molecular network perspectives. We also put forward the key issues that need to be addressed, including the nature of leaf age, functional stay-green trait, coordination between different regulatory pathways, source-sink relationship and nutrient remobilization, as well as translational researches on leaf senescence.
Collapse
Affiliation(s)
- Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101 Shandong China
| | - Guodong Ren
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Kewei Zhang
- Institute of Plant Genetics and Developmental Biology, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004 Zhejiang China
| | - Zhonghai Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083 China
| | - Ying Miao
- Fujian Provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology (SUSTech), Shenzhen, 518055 Guangdong China
| |
Collapse
|
15
|
Zhang YM, Guo P, Xia X, Guo H, Li Z. Multiple Layers of Regulation on Leaf Senescence: New Advances and Perspectives. FRONTIERS IN PLANT SCIENCE 2021; 12:788996. [PMID: 34938309 PMCID: PMC8685244 DOI: 10.3389/fpls.2021.788996] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/03/2021] [Indexed: 05/22/2023]
Abstract
Leaf senescence is the last stage of leaf development and is an orderly biological process accompanied by degradation of macromolecules and nutrient recycling, which contributes to plant fitness. Forward genetic mutant screening and reverse genetic studies of senescence-associated genes (SAGs) have revealed that leaf senescence is a genetically regulated process, and the initiation and progression of leaf senescence are influenced by an array of internal and external factors. Recently, multi-omics techniques have revealed that leaf senescence is subjected to multiple layers of regulation, including chromatin, transcriptional and post-transcriptional, as well as translational and post-translational levels. Although impressive progress has been made in plant senescence research, especially the identification and functional analysis of a large number of SAGs in crop plants, we still have not unraveled the mystery of plant senescence, and there are some urgent scientific questions in this field, such as when plant senescence is initiated and how senescence signals are transmitted. This paper reviews recent advances in the multiple layers of regulation on leaf senescence, especially in post-transcriptional regulation such as alternative splicing.
Collapse
Affiliation(s)
- Yue-Mei Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Pengru Guo
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongwei Guo
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Zhonghai Li
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- *Correspondence: Zhonghai Li,
| |
Collapse
|