1
|
Wang Y, Liu L, Pu X, Ma C, Qu H, Wei M, Zhang K, Wu Q, Li C. Transcriptome Analysis and SNP Identification Reveal That Heterologous Overexpression of Two Uncharacterized Genes Enhances the Tolerance of Magnaporthe oryzae to Manganese Toxicity. Microbiol Spectr 2022; 10:e0260521. [PMID: 35638819 PMCID: PMC9241697 DOI: 10.1128/spectrum.02605-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Manganese is a crucial trace element that constitutes the cofactors of many enzymes. However, excessive Mn2+ can be toxic for both prokaryotes and eukaryotes. The mechanism of fungal genetics and metabolism in response to Mn2+ stress remains understudied, warranting further studies. Magnaporthe oryzae is well-established as the most destructive pathogen of rice. A field strain, YN2046, more sensitive to Mn2+ toxicity than other strains, was obtained from a previous study. Herein, we explored the genetic mechanisms of Mn2+ sensitivity in YN2046 through comparative transcriptomic analyses. We found that many genes previously reported to participate in Mn2+ stress were not regulated in YN2046. These non-responsive genes might cause Mn2+ sensitivity in YN2046. Weight gene correlation network analysis (WGCNA) was performed to characterize the expression profile in YN2046. Some overexpressed genes were only found in the Mn2+ tolerant isolate YN125. Among these, many single nucleotide polymorphism (SNP) were identified between YN125 and YN2046, which might disrupt the expression levels of Mn responsive genes. We cloned two uncharacterized genes, MGG_13347 and MGG_16609, from YN125 and transformed them to YN2046 with a strong promoter. Our results showed that the heterologous overexpression of two genes in YN2046 restored its sensitivity. Transcriptomic and biochemical analyses were performed to understand Mn tolerance mechanisms mediated by the two heterologous overexpressed genes. Our results showed that heterologous overexpression of these two genes activated downstream gene expression and metabolite production to restore M. oryzae sensitivity to Mn, implying that SNPs in responsive genes account for different phenotypes of the two strains under Mn stress. IMPORTANCE Heavy metals are used for fungicides as they target phytopathogen in multiple ways. Magnaporthe oryzae is the most destructive rice pathogen and is threatening global rice production. In the eukaryotes, the regulation mechanisms of Mn homeostasis often focus on the posttranslation, there were a few results about regulation at transcript level. The comparative transcriptome analysis showed that fewer genes were regulated in the Mn-sensitive strain. WGCNA and SNP analyses found that mutations in promoter and coding sequence regions might disrupt the expression of genes involved in Mn detoxification in the sensitive strain. We transferred two unannotated genes that were cloned from the Mn-tolerant strain into a sensitive strain with strong promoters, and the transformants exhibited an enhanced tolerance to Mn2+ toxicity. Transcriptome and biochemistry results indicated that heterologous overexpression of the two genes enhanced the tolerance to Mn toxicity by reactivation of downstream genes in M. oryzae.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Lina Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Xin Pu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Chan Ma
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Hao Qu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Mian Wei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Ke Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Qi Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, People's Republic of China
| |
Collapse
|
2
|
Funck D, Sinn M, Fleming JR, Stanoppi M, Dietrich J, López-Igual R, Mayans O, Hartig JS. Discovery of a Ni 2+-dependent guanidine hydrolase in bacteria. Nature 2022; 603:515-521. [PMID: 35264792 DOI: 10.1038/s41586-022-04490-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022]
Abstract
Nitrogen availability is a growth-limiting factor in many habitats1, and the global nitrogen cycle involves prokaryotes and eukaryotes competing for this precious resource. Only some bacteria and archaea can fix elementary nitrogen; all other organisms depend on the assimilation of mineral or organic nitrogen. The nitrogen-rich compound guanidine occurs widely in nature2-4, but its utilization is impeded by pronounced resonance stabilization5, and enzymes catalysing hydrolysis of free guanidine have not been identified. Here we describe the arginase family protein GdmH (Sll1077) from Synechocystis sp. PCC 6803 as a Ni2+-dependent guanidine hydrolase. GdmH is highly specific for free guanidine. Its activity depends on two accessory proteins that load Ni2+ instead of the typical Mn2+ ions into the active site. Crystal structures of GdmH show coordination of the dinuclear metal cluster in a geometry typical for arginase family enzymes and allow modelling of the bound substrate. A unique amino-terminal extension and a tryptophan residue narrow the substrate-binding pocket and identify homologous proteins in further cyanobacteria, several other bacterial taxa and heterokont algae as probable guanidine hydrolases. This broad distribution suggests notable ecological relevance of guanidine hydrolysis in aquatic habitats.
Collapse
Affiliation(s)
- D Funck
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - M Sinn
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - J R Fleming
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - M Stanoppi
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - J Dietrich
- Department of Chemistry, University of Konstanz, Konstanz, Germany
| | - R López-Igual
- Instituto de Bioquímica Vegetal y Fotosíntesis, Universidad de Sevilla and C.S.I.C, Seville, Spain
| | - O Mayans
- Department of Biology, University of Konstanz, Konstanz, Germany.,Konstanz Graduate School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany
| | - J S Hartig
- Department of Chemistry, University of Konstanz, Konstanz, Germany. .,Konstanz Graduate School Chemical Biology (KoRS-CB), University of Konstanz, Konstanz, Germany.
| |
Collapse
|
3
|
Ostermeier M, Heinz S, Hamm J, Zabret J, Rast A, Klingl A, Nowaczyk MM, Nickelsen J. Thylakoid attachment to the plasma membrane in Synechocystis sp. PCC 6803 requires the AncM protein. THE PLANT CELL 2022; 34:655-678. [PMID: 34665262 PMCID: PMC8846179 DOI: 10.1093/plcell/koab253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Thylakoids are the highly specialized internal membrane systems that harbor the photosynthetic electron transport machinery in cyanobacteria and in chloroplasts. In Synechocystis sp. PCC 6803, thylakoid membranes (TMs) are arranged in peripheral sheets that occasionally converge on the plasma membrane (PM) to form thylakoid convergence membranes (TCMs). TCMs connect several thylakoid sheets and form local contact sites called thylapses between the two membrane systems, at which the early steps of photosystem II (PSII) assembly occur. The protein CurT is one of the main drivers of TCM formation known so far. Here, we identify, by whole-genome sequencing of a curT- suppressor strain, the protein anchor of convergence membranes (AncM) as a factor required for the attachment of thylakoids to the PM at thylapses. An ancM- mutant is shown to have a photosynthetic phenotype characterized by reductions in oxygen-evolution rate, PSII accumulation, and PS assembly. Moreover, the ancM- strain exhibits an altered thylakoid ultrastructure with additional sheets and TCMs detached from the PM. By combining biochemical studies with fluorescence and correlative light-electron microscopy-based approaches, we show that AncM is an integral membrane protein located in biogenic TCMs that form thylapses. These data suggest an antagonistic function of AncM and CurT in shaping TM ultrastructure.
Collapse
Affiliation(s)
- Matthias Ostermeier
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, 82152, Germany
| | - Steffen Heinz
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, 82152, Germany
| | - Julia Hamm
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, 82152, Germany
| | - Jure Zabret
- Department of Plant Biochemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Anna Rast
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, 82152, Germany
| | - Andreas Klingl
- Department of Plant Development, LMU Munich, Planegg-Martinsried, 82152, Germany
| | - Marc M Nowaczyk
- Department of Plant Biochemistry, Ruhr-University Bochum, Bochum 44801, Germany
| | - Jörg Nickelsen
- Department of Molecular Plant Science, LMU Munich, Planegg-Martinsried, 82152, Germany
| |
Collapse
|
4
|
Schätzle H, Brouwer EM, Liebhart E, Stevanovic M, Schleiff E. Comparative Phenotypic Analysis of Anabaena sp. PCC 7120 Mutants of Porinlike Genes. J Microbiol Biotechnol 2021; 31:645-658. [PMID: 33879642 PMCID: PMC9705863 DOI: 10.4014/jmb.2103.03009] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/05/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022]
Abstract
Porins are essential for the viability of Gram-negative bacteria. They ensure the uptake of nutrients, can be involved in the maintenance of outer membrane integrity and define the antibiotic or drug resistance of organisms. The function and structure of porins in proteobacteria is well described, while their function in photoautotrophic cyanobacteria has not been systematically explored. We compared the domain architecture of nine putative porins in the filamentous cyanobacterium Anabaena sp. PCC 7120 and analyzed the seven candidates with predicted OprB-domain. Single recombinant mutants of the seven genes were created and their growth capacity under different conditions was analyzed. Most of the putative porins seem to be involved in the transport of salt and copper, as respective mutants were resistant to elevated concentrations of these substances. In turn, only the mutant of alr2231 was less sensitive to elevated zinc concentrations, while mutants of alr0834, alr4741 and all4499 were resistant to high manganese concentrations. Notably the mutant of alr4550 shows a high sensitivity against harmful compounds, which is indicative for a function related to the maintenance of outer membrane integrity. Moreover, the mutant of all5191 exhibited a phenotype which suggests either a higher nitrate demand or an inefficient nitrogen fixation. The dependency of porin membrane insertion on Omp85 proteins was tested exemplarily for Alr4550, and an enhanced aggregation of Alr4550 was observed in two omp85 mutants. The comparative analysis of porin mutants suggests that the proteins in parts perform distinct functions related to envelope integrity and solute uptake.
Collapse
Affiliation(s)
- Hannah Schätzle
- Institute for Molecular Biosciences, Goethe University, Frankfurt am Main, Germany,FIERCE, Goethe University, Frankfurt am Main, Germany,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany
| | - Eva-Maria Brouwer
- Institute for Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Elisa Liebhart
- Institute for Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Mara Stevanovic
- Institute for Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Enrico Schleiff
- Institute for Molecular Biosciences, Goethe University, Frankfurt am Main, Germany,FIERCE, Goethe University, Frankfurt am Main, Germany,Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am Main, Germany,Frankfurt Institute of Advanced Studies, Frankfurt am Main, Germany,Corresponding author Phone: +49 69 798 29287 Fax: +49 69 798 29286 E-mail:
| |
Collapse
|
5
|
Hoecker N, Hennecke Y, Schrott S, Marino G, Schmidt SB, Leister D, Schneider A. Gene Replacement in Arabidopsis Reveals Manganese Transport as an Ancient Feature of Human, Plant and Cyanobacterial UPF0016 Proteins. FRONTIERS IN PLANT SCIENCE 2021; 12:697848. [PMID: 34194462 PMCID: PMC8236900 DOI: 10.3389/fpls.2021.697848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/20/2021] [Indexed: 05/08/2023]
Abstract
The protein family 0016 (UPF0016) is conserved through evolution, and the few members characterized share a function in Mn2+ transport. So far, little is known about the history of these proteins in Eukaryotes. In Arabidopsis thaliana five such proteins, comprising four different subcellular localizations including chloroplasts, have been described, whereas non-photosynthetic Eukaryotes have only one. We used a phylogenetic approach to classify the eukaryotic proteins into two subgroups and performed gene-replacement studies to investigate UPF0016 genes of various origins. Replaceability can be scored readily in the Arabidopsis UPF0016 transporter mutant pam71, which exhibits a functional deficiency in photosystem II. The N-terminal region of the Arabidopsis PAM71 was used to direct selected proteins to chloroplast membranes. Transgenic pam71 lines overexpressing the closest plant homolog (CMT1), human TMEM165 or cyanobacterial MNX successfully restored photosystem II efficiency, manganese binding to photosystem II complexes and consequently plant growth rate and biomass production. Thus AtCMT1, HsTMEM165, and SynMNX can operate in the thylakoid membrane and substitute for PAM71 in a non-native environment, indicating that the manganese transport function of UPF0016 proteins is an ancient feature of the family. We propose that the two chloroplast-localized UPF0016 proteins, CMT1 and PAM71, in plants originated from the cyanobacterial endosymbiont that gave rise to the organelle.
Collapse
Affiliation(s)
- Natalie Hoecker
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Yvonne Hennecke
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Simon Schrott
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Giada Marino
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
- Massenspektrometrie von Biomolekülen an der LMU (MSBioLMU), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Sidsel Birkelund Schmidt
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Dario Leister
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | - Anja Schneider
- Molekularbiologie der Pflanzen (Botanik), Fakultät für Biologie, Ludwig-Maximilians-Universität München, Martinsried, Germany
- *Correspondence: Anja Schneider,
| |
Collapse
|
6
|
Olina A, Kuzmenko A, Ninova M, Aravin AA, Kulbachinskiy A, Esyunina D. Genome-wide DNA sampling by Ago nuclease from the cyanobacterium Synechococcus elongatus. RNA Biol 2020; 17:677-688. [PMID: 32013676 PMCID: PMC7237159 DOI: 10.1080/15476286.2020.1724716] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/03/2020] [Accepted: 01/12/2020] [Indexed: 12/17/2022] Open
Abstract
Members of the conserved Argonaute (Ago) protein family provide defence against invading nucleic acids in eukaryotes in the process of RNA interference. Many prokaryotes also contain Ago proteins that are predicted to be active nucleases; however, their functional activities in host cells remain poorly understood. Here, we characterize the in vitro and in vivo properties of the SeAgo protein from the mesophilic cyanobacterium Synechococcus elongatus. We show that SeAgo is a DNA-guided nuclease preferentially acting on single-stranded DNA targets, with non-specific guide-independent activity observed for double-stranded substrates. The SeAgo gene is steadily expressed in S. elongatus; however, its deletion or overexpression does not change the kinetics of cell growth. When purified from its host cells or from heterologous E. coli, SeAgo is loaded with small guide DNAs whose formation depends on the endonuclease activity of the argonaute protein. SeAgo co-purifies with SSB proteins suggesting that they may also be involved in DNA processing. The SeAgo-associated small DNAs are derived from diverse genomic locations, with certain enrichment for the proposed sites of chromosomal replication initiation and termination, but show no preference for an endogenous plasmid. Therefore, promiscuous genome sampling by SeAgo does not have great effects on cell physiology and plasmid maintenance.
Collapse
Affiliation(s)
- Anna Olina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Anton Kuzmenko
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Maria Ninova
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alexei A. Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | - Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|