1
|
Su X, Wang J, Sun S, Peng W, Li M, Mao P, Dou L. Genome-wide identification of the EIN3/EIL transcription factor family and their responses under abiotic stresses in Medicago sativa. BMC PLANT BIOLOGY 2024; 24:898. [PMID: 39343877 PMCID: PMC11440698 DOI: 10.1186/s12870-024-05588-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Medicago sativa, often referred to as the "king of forage", is prized for its high content of protein, minerals, carbohydrates, and digestible nutrients. However, various abiotic stresses can hinder its growth and development, ultimately resulting in reduced yield and quality, including water deficiency, high salinity, and low temperature. The ethylene-insensitive 3 (EIN3)/ethylene-insensitive 3-like (EIL) transcription factors are key regulators in the ethylene signaling pathway in plants, playing crucial roles in development and in the response to abiotic stresses. Research on the EIN3/EIL gene family has been reported for several species, but minimal information is available for M. sativa. RESULTS In this study, we identified 10 MsEIN3/EIL genes from the M. sativa genome (cv. Zhongmu No.1), which were classified into three clades based on phylogenetic analysis. The conserved structural domains of the MsEIN3/EIL genes include motifs 1, 2, 3, 4, and 9. Gene duplication analyses suggest that segmental duplication (SD) has played a significant role in the expansion of the MsEIN3/EIL gene family throughout evolution. Analysis of the cis-acting elements in the promoters of MsEIN3/EIL genes indicates their potential to respond to various hormones and environmental stresses. We conducted a further analysis of the tissue-specific expression of the MsEIN3/EIL genes and assessed the gene expression profiles of MsEIN3/EIL under various stresses using transcriptome data, including cold, drought, salt and abscisic acid treatments. The results showed that MsEIL1, MsEIL4, and MsEIL5 may act as positive regulatory factors involved in M. sativa's response to abiotic stress, providing important genetic resources for molecular design breeding. CONCLUSION This study investigated MsEIN3/EIL genes in M. sativa and identified three candidate transcription factors involved in the regulation of abiotic stresses. These findings will offer valuable insights into uncovering the molecular mechanisms underlying various stress responses in M. sativa.
Collapse
Affiliation(s)
- Xinru Su
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Juan Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shoujiang Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wenxin Peng
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Manli Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Peisheng Mao
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Liru Dou
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Manivannan A, Cheeran Amal T. Deciphering the complex cotton genome for improving fiber traits and abiotic stress resilience in sustainable agriculture. Mol Biol Rep 2023; 50:6937-6953. [PMID: 37349608 DOI: 10.1007/s11033-023-08565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Understanding the complex cotton genome is of paramount importance in devising a strategy for sustainable agriculture. Cotton is probably the most economically important cash crop known for its cellulose-rich fiber content. The cotton genome has become an ideal model for deciphering polyploidization due to its polyploidy, setting it apart from other major crops. However, the main challenge in understanding the functional and regulatory functions of many genes in cotton is still the complex cotton polyploidy genome, which is not limited to a single role. Cotton production is vulnerable to the sensitive effects of climate change, which can alter or aggravate soil, pests, and diseases. Thus, conventional plant breeding coupled with advanced technologies has led to substantial progress being made in cotton production. GENOMICS APPROACHES IN COTTON In the frontier areas of genomics research, cotton genomics has gained momentum accomplished by robust high-throughput sequencing platforms combined with novel computational tools to make the cotton genome more tractable. Advances in long-read sequencing have allowed for the generation of the complete set of cotton gene transcripts giving incisive scientific knowledge in cotton improvement. In contrast, the integration of the latest sequencing platforms has been used to generate multiple high-quality reference genomes in diploid and tetraploid cotton. While pan-genome and 3D genomic studies are still in the early stages in cotton, it is anticipated that rapid advances in sequencing, assembly algorithms, and analysis pipelines will have a greater impact on advanced cotton research. CONCLUSIONS This review article briefly compiles substantial contributions in different areas of the cotton genome, which include genome sequencing, genes, and their molecular regulatory networks in fiber development and stress tolerance mechanism. This will greatly help us in understanding the robust genomic organization which in turn will help unearth candidate genes for functionally important agronomic traits.
Collapse
Affiliation(s)
- Alagarsamy Manivannan
- ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore, 641 003, Tamil Nadu, India.
| | - Thomas Cheeran Amal
- ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore, 641 003, Tamil Nadu, India
| |
Collapse
|
3
|
Genome-Wide Identification of Brassicaceae Hormone-Related Transcription Factors and Their Roles in Stress Adaptation and Plant Height Regulation in Allotetraploid Rapeseed. Int J Mol Sci 2022; 23:ijms23158762. [PMID: 35955899 PMCID: PMC9369146 DOI: 10.3390/ijms23158762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Phytohormone-related transcription factors (TFs) are involved in regulating stress responses and plant growth. However, systematic analysis of these TFs in Brassicaceae is limited, and their functions in stress adaptation and plant height (PH) regulation remain unclear. In this study, 2115 hormone-related TFs were identified in nine Brassicaceae species. Specific domains were found in several Brassicaceae hormone-related TFs, which may be associated with diverse functions. Syntenic analysis indicated that expansion of these genes was mainly caused by segmental duplication, with whole-genome duplication occurring in some species. Differential expression analysis and gene co-expression network analysis identified seven phytohormone-related TFs (BnaWRKY7, 21, 32, 38, 52, BnaGL3-4, and BnaAREB2-5) as possible key genes for cadmium (Cd) toxicity, salinity stress, and potassium (K) and nitrogen (N) deficiencies. Furthermore, BnaWRKY42 and BnaARR21 may play essential roles in plant height. Weighted gene co-expression network analysis (WGCNA) identified 15 phytohormone-related TFs and their potential target genes regulating stress adaptation and plant height. Among the above genes, BnaWRKY56 and BnaWRKY60 responded to four different stresses simultaneously, and BnaWRKY42 was identified in two dwarf rapeseeds. In summary, several candidate genes for stress resistance (BnaWRKY56 and BnaWRKY60) and plant height (BnaWRKY42) were identified. These findings should help elucidate the biological roles of Brassicaceae hormone-related TFs, and the identified candidate genes should provide a genetic resource for the potential development of stress-tolerant and dwarf oilseed plants.
Collapse
|
4
|
Revealing Genetic Differences in Fiber Elongation between the Offspring of Sea Island Cotton and Upland Cotton Backcross Populations Based on Transcriptome and Weighted Gene Coexpression Networks. Genes (Basel) 2022; 13:genes13060954. [PMID: 35741716 PMCID: PMC9222338 DOI: 10.3390/genes13060954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
Fiber length is an important indicator of cotton fiber quality, and the time and rate of cotton fiber cell elongation are key factors in determining the fiber length of mature cotton. To gain insight into the differences in fiber elongation mechanisms in the offspring of backcross populations of Sea Island cotton Xinhai 16 and land cotton Line 9, we selected two groups with significant differences in fiber length (long-fiber group L and short-fiber group S) at different fiber development stages 0, 5, 10 and 15 days post-anthesis (DPA) for transcriptome comparison. A total of 171.74 Gb of clean data was obtained by RNA-seq, and eight genes were randomly selected for qPCR validation. Data analysis identified 6055 differentially expressed genes (DEGs) between two groups of fibers, L and S, in four developmental periods, and gene ontology (GO) term analysis revealed that these DEGs were associated mainly with microtubule driving, reactive oxygen species, plant cell wall biosynthesis, and glycosyl compound hydrolase activity. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis indicated that plant hormone signaling, mitogen-activated protein kinase (MAPK) signaling, and starch and sucrose metabolism pathways were associated with fiber elongation. Subsequently, a sustained upregulation expression pattern, profile 19, was identified and analyzed using short time-series expression miner (STEM). An analysis of the weighted gene coexpression network module uncovered 21 genes closely related to fiber development, mainly involved in functions such as cell wall relaxation, microtubule formation, and cytoskeletal structure of the cell wall. This study helps to enhance the understanding of the Sea Island–Upland backcross population and identifies key genes for cotton fiber development, and these findings will provide a basis for future research on the molecular mechanisms of fiber length formation in cotton populations.
Collapse
|
5
|
Yu D, Li X, Li Y, Ali F, Li F, Wang Z. Dynamic roles and intricate mechanisms of ethylene in epidermal hair development in Arabidopsis and cotton. THE NEW PHYTOLOGIST 2022; 234:375-391. [PMID: 34882809 DOI: 10.1111/nph.17901] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Ethylene affects many aspects of plant growth and development, including root hairs and trichomes growth in Arabidopsis, as well as fiber development in cotton, though the underlying mechanism is unclear. In this article, we update the research progress associated with the main genes in ethylene biosynthesis and signaling pathway, and we propose a clear ethylene pathway based on genome-wide identification of homologues in cotton. Expression pattern analysis using transcriptome data revealed that some candidate genes may contribute to cotton fiber development through the ethylene pathway. Moreover, we systematically summarized the effects of ethylene on the development of epidermal hair and the underlying regulatory mechanisms in Arabidopsis. Based on the knowledge of ethylene-promoted cell differentiation, elongation, and development in different tissues or plants, we advised a possible regulatory network for cotton fiber development with ethylene as the hub. Importantly, we emphasized the roles of ethylene as an important node in regulating cotton vegetative growth, and stress resistance, and suggested utilizing multiple methods to subtly modify ethylene synthesis or signaling in a tissue or spatiotemporal-specific manner to clarify its exact effect on architecture, adaptability of the plant, and fiber development, paving the way for basic research and genetic improvement of the cotton crop.
Collapse
Affiliation(s)
- Daoqian Yu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xiaona Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yonghui Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Faiza Ali
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
6
|
Mohamed SB, Kambal S, Ibrahim SAE, Abdalwhab E, Munir A, Ibrahim A, Ali QM. Bioinformatics in Sudan: Status and challenges case study: The National University-Sudan. PLoS Comput Biol 2021; 17:e1009462. [PMID: 34673773 PMCID: PMC8530284 DOI: 10.1371/journal.pcbi.1009462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The ever increasing applications of bioinformatics in providing effective interpretation of large and complex biological data require expertise in the use of sophisticated computational tools and advanced statistical tests, skills that are mostly lacking in the Sudanese research community. This can be attributed to paucity in the development and promotion of bioinformatics, lack of senior bioinformaticians, and the general status quo of inadequate research funding in Sudan. In this paper, we describe the challenges that have encountered the development of bioinformatics as a discipline in Sudan. Additionally, we highlight on specific actions that may help develop and promote its education and training. The paper takes the National University Biomedical Research Institute (NUBRI) as an example of an institute that has tackled many of these challenges and strives to drive powerful efforts in the development of bioinformatics in the country. Bioinformatics is gaining recognition globally and in Sudan as an important subdiscipline of biological sciences, one that enables researchers to efficiently interpret complex biological data. A limited number of Sudanese academic institutions have acknowledged this field despite its increasingly recognized importance. The development of bioinformatics in the country requires interdisciplinary collaborations involving experts in life sciences, research methodology, healthcare, computer, and data sciences. This can be achieved through designing educational programs and workshops alongside proposing and establishing effective collaborative research projects. In this context, we comprehensively discussed the present state of bioinformatics in Sudan, the challenges faced, as well as the efforts exerted by academic institutions including NUBRI, to upgrade infrastructure and establish local and international collaborations.
Collapse
Affiliation(s)
- Sofia B. Mohamed
- Bioinformatics and Biostatistics Department, National University Biomedical Research Institute, National University-Sudan, Khartoum, Sudan
- * E-mail:
| | - Sumaya Kambal
- Bioinformatics and Biostatistics Department, National University Biomedical Research Institute, National University-Sudan, Khartoum, Sudan
| | - Sabah A. E. Ibrahim
- Bioinformatics and Biostatistics Department, National University Biomedical Research Institute, National University-Sudan, Khartoum, Sudan
| | - Esra Abdalwhab
- Bioinformatics and Biostatistics Department, National University Biomedical Research Institute, National University-Sudan, Khartoum, Sudan
| | - Abdalla Munir
- Bioinformatics and Biostatistics Department, National University Biomedical Research Institute, National University-Sudan, Khartoum, Sudan
| | - Arwa Ibrahim
- Bioinformatics and Biostatistics Department, National University Biomedical Research Institute, National University-Sudan, Khartoum, Sudan
| | - Qurashi Mohamed Ali
- Bioinformatics and Biostatistics Department, National University Biomedical Research Institute, National University-Sudan, Khartoum, Sudan
| |
Collapse
|
7
|
Salih H, Wang X, Chen B, Jia Y, Gong W, Du X. Identification, characterization and expression profiling of circular RNAs in the early cotton fiber developmental stages. Genomics 2020; 113:356-365. [PMID: 33338632 DOI: 10.1016/j.ygeno.2020.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/29/2020] [Accepted: 12/13/2020] [Indexed: 11/27/2022]
Abstract
Circular RNA is one of the endogenous non-coding RNAs with a covalently closed loop structure and largely involved in regulating gene expression. However, the abundance of circular RNAs and their regulatory functions during the early stages of fiber development are still not known. In this work, we conducted high-throughput sequencing of the Ligonlintless-1 and its wild-type at 0 DPA, 8 DPA and stem. A total of 2811 circular RNAs were identified and unevenly distributed across cotton chromosomes. We found 34, 142 and 27 circular RNAs were differentially expressed between Ligonlintless-1 and wild-type at 0 DPA, 8 DPA and stem, respectively. Both circular RNA-microRNA-mRNA network and MeJA treatment results in Ligonlintless-1 and wild-type might provide a strong indication of four circular RNAs and ghr_miR169b being important biological molecular associating with fiber development. The results provide new insight into the putative molecular function of circular RNAs in the regulation of fiber development.
Collapse
Affiliation(s)
- Haron Salih
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, China; Crop Sciences department, Zalingei University, Central Darfur, Sudan
| | - Xiao Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, China
| | - Baojun Chen
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, China
| | - Yinhua Jia
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, China
| | - Wenfang Gong
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, China.
| | - Xiongming Du
- Institute of Cotton Research, Chinese Academy of Agricultural Science (ICR, CAAS)/State Key Laboratory of Cotton Biology, Anyang, China.
| |
Collapse
|
8
|
Nigro D, Fortunato S, Giove SL, Mazzucotelli E, Gadaleta A. Functional Validation of Glutamine synthetase and Glutamate synthase Genes in Durum Wheat near Isogenic Lines with QTL for High GPC. Int J Mol Sci 2020; 21:ijms21239253. [PMID: 33291583 PMCID: PMC7730160 DOI: 10.3390/ijms21239253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
Durum wheat (Triticum turgidum L. ssp. durum) is a minor crop grown on about 17 million hectares of land worldwide. Several grain characteristics determine semolina's high end-use quality, such as grain protein content (GPC) which is directly related to the final products' nutritional and technological values. GPC improvement could be pursued by considering a candidate gene approach. The glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle represents a bottleneck in the first step of nitrogen assimilation. QTL for GPC have been located on all chromosomes, and several major ones have been reported on 2A and 2B chromosomes, where GS2 and Fd-GOGAT genes have been mapped. A useful and efficient method to validate a putative QTL is the constitution of near-isogenic lines (NILs) by using the marker found to be associated to that QTL. Here, we present the development of two distinct sets of heterogeneous inbred family (HIF)- based NILs segregating for GS2 and Fd-GOGAT genes obtained from heterozygous lines at those loci, as well as their genotypic and phenotypic characterizations. The results allow the validation of the previously identified GPC QTL on 2A and 2B chromosomes, along with the role of these key genes in GPC control.
Collapse
Affiliation(s)
- Domenica Nigro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
- Correspondence: (D.N.); (A.G.); Tel.: +39-0805442997(D.N.); +39-0805442995 (A.G.)
| | | | - Stefania Lucia Giove
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, 70126 Bari, Italy;
| | | | - Agata Gadaleta
- Department of Agricultural and Environmental Science, University of Bari Aldo Moro, 70126 Bari, Italy;
- Correspondence: (D.N.); (A.G.); Tel.: +39-0805442997(D.N.); +39-0805442995 (A.G.)
| |
Collapse
|
9
|
Ganesh I, Gwon DA, Lee JW. Gas-Sensing Transcriptional Regulators. Biotechnol J 2020; 15:e1900345. [PMID: 32362055 DOI: 10.1002/biot.201900345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/08/2020] [Indexed: 11/10/2022]
Abstract
Gas molecules are ubiquitous in the environment and are used as nutrient and energy sources for living organisms. Many organisms, therefore, have developed gas-sensing systems to respond efficiently to changes in the atmospheric environment. In microorganisms and plants, two-component systems (TCSs) and transcription factors (TFs) are two primary mechanisms to sense gas molecules. In this review, gas-sensing transcriptional regulators, TCSs, and TFs, focusing on protein structures, mechanisms of gas molecule interaction, DNA binding regions of transcriptional regulators, signal transduction mechanisms, and gene expression regulation are discussed. At first, transcriptional regulators that directly sense gas molecules with the help of a prosthetic group is described and then gas-sensing systems that indirectly recognize the presence of gas molecules is explained. Overall, this review provides a comprehensive understanding of gas-sensing transcriptional regulators in microorganisms and plants, and proposes a future perspective on the use of gas-sensing transcriptional regulators.
Collapse
Affiliation(s)
- Irisappan Ganesh
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Da-Ae Gwon
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|