1
|
Hahn L, Kurtz C, de Paula BV, Feltrim AL, Higashikawa FS, Moreira C, Rozane DE, Brunetto G, Parent LÉ. Feature-specific nutrient management of onion (Allium cepa) using machine learning and compositional methods. Sci Rep 2024; 14:6034. [PMID: 38472199 DOI: 10.1038/s41598-024-55647-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
While onion cultivars, irrigation and soil and crop management have been given much attention in Brazil to boost onion yields, nutrient management at field scale is still challenging due to large dosage uncertainty. Our objective was to develop an accurate feature-based fertilization model for onion crops. We assembled climatic, edaphic, and managerial features as well as tissue tests into a database of 1182 observations from multi-environment fertilizer trials conducted during 13 years in southern Brazil. The complexity of onion cropping systems was captured by machine learning (ML) methods. The RReliefF ranking algorithm showed that the split-N dosage and soil tests for micronutrients and S were the most relevant features to predict bulb yield. The decision-tree random forest and extreme gradient boosting models were accurate to predict bulb yield from the relevant predictors (R2 > 90%). As shown by the gain ratio, foliar nutrient standards for nutritionally balanced and high-yielding specimens producing > 50 Mg bulb ha-1 set apart by the ML classification models differed among cultivars. Cultivar × environment interactions support documenting local nutrient diagnosis. The split-N dosage was the most relevant controllable feature to run future universality tests set to assess models' ability to generalize to growers' fields.
Collapse
Affiliation(s)
- Leandro Hahn
- Caçador Experimental Station, Research and Rural Extension of Santa Catarina (Epagri), Epagri, Abílio Franco Street, 1500, Caçador, Santa Catarina, 89501-032, Brazil
| | - Claudinei Kurtz
- Ituporanga Experimental Station, Research and Rural Extension of Santa Catarina (Epagri), Epagri, Lageado Águas Negras General Road, Ituporanga, Santa Catarina, 88400-000, Brazil
| | - Betania Vahl de Paula
- Department of Soil, Federal University of Santa Maria, Ave. Roraima, 1000, Building 42, Santa Maria, RS, 97105-900, Brazil.
| | - Anderson Luiz Feltrim
- Caçador Experimental Station, Research and Rural Extension of Santa Catarina (Epagri), Epagri, Abílio Franco Street, 1500, Caçador, Santa Catarina, 89501-032, Brazil
| | - Fábio Satoshi Higashikawa
- Ituporanga Experimental Station, Research and Rural Extension of Santa Catarina (Epagri), Epagri, Lageado Águas Negras General Road, Ituporanga, Santa Catarina, 88400-000, Brazil
| | - Camila Moreira
- University Alto Vale do Rio do Peixe, Uniarp, Victor Baptista Adami Street, 800, Caçador, Santa Catarina, 89500-000, Brazil
| | - Danilo Eduardo Rozane
- State University Paulista "Julio Mesquita Filho", Campus Registro. Registro, Av. Nelson Brihi Badur, 430, São Paulo, 11900-000, Brazil
| | - Gustavo Brunetto
- Department of Soil, Federal University of Santa Maria, Ave. Roraima, 1000, Building 42, Santa Maria, RS, 97105-900, Brazil
| | - Léon-Étienne Parent
- Department of Soil, Federal University of Santa Maria, Ave. Roraima, 1000, Building 42, Santa Maria, RS, 97105-900, Brazil
- Department of Soils and Agrifood Engineering, Laval University, Quebec, QC, G1V 0A6, Canada
| |
Collapse
|
2
|
Mpongwana S, Manyevere A, Mupangwa J, Mpendulo CT, Mashamaite CV. Improving soil fertility through dual inoculation with arbuscular mycorrhizal fungi and Rhizobium on a eutric cambisol cultivated with forage legumes in a semi-arid region. Heliyon 2024; 10:e24817. [PMID: 38312554 PMCID: PMC10834816 DOI: 10.1016/j.heliyon.2024.e24817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
The Sub-Saharan region of southern Africa is characterized by high temperatures, low rainfall, and poor land-use management practices such as continuous cropping without replenishment of soil nutrients. The combination of these factors has resulted in nutrient depletion and land degradation. The current study aimed at investigating the effect of arbuscular mycorrhizal fungi (AMF) and Rhizobium bacteria inoculation on soil chemical properties in field-grown forage legumes, namely, Mucuna pruriens (mucuna), Lablab purpureus (lablab) and Vigna unguiculata (cowpea), in the semi-arid region of the Eastern Cape Province (South Africa). Forage legumes were inoculated with the AMF species Paraglomus occulum and the Rhizobia bacteria species Bradyrhizobium strain and grown for 120 days. Soil samples were collected in the following sequence: prior to planting, before flowering and after harvesting the forage legumes in each of the two seasons (2017/2018 and 2018/2019) and soil chemical properties were determined using standard procedures. The results showed that the addition of dual inoculation over time greatly improved soil chemical properties when compared to the control treatment. This was advocated by the significant (P ≤ 0.05) increase in soil pH, soil organic carbon, soil organic matter, total nitrogen, phosphorus, calcium, potassium, magnesium, sodium, sulfur and iron in soils. The concentration of cation exchange capacity was significantly (P ≤ 0.05) higher in cowpea treated with Rhizobium as compared to other treatment combinations. The control treatment of mucuna forage greatly improved the concentrations of manganese, boron, copper, molybdenum, and zinc over other treatment combinations only before the flowering stage. However, the concentrations of micronutrients were significantly higher on the treatment combination of lablab and single inoculation of AMF after harvesting. Generally, dual inoculation with AMF and Rhizobia enhanced soil properties when compared to a single inoculation or untreated control.
Collapse
Affiliation(s)
- Sanele Mpongwana
- Department of Livestock and Pasture Science, University of Fort Hare, Private Bag X 1314, Alice 5700, South Africa
| | - Alen Manyevere
- Department of Agronomy, University of Fort Hare, Private Bag X 1314, Alice 5700, South Africa
| | - Johnfisher Mupangwa
- Department of Livestock and Pasture Science, University of Fort Hare, Private Bag X 1314, Alice 5700, South Africa
- Department of Animal Production, Agribusiness & Economics, University of Namibia, Neudamm Campus, Private Bag 13188, Windhoek, Namibia
| | - Conference Thando Mpendulo
- Department of Livestock and Pasture Science, University of Fort Hare, Private Bag X 1314, Alice 5700, South Africa
| | | |
Collapse
|
3
|
Pokluda R, Ragasová LN, Jurica M, Kalisz A, Komorowska M, Niemiec M, Caruso G, Gąstoł M, Sekara A. The shaping of onion seedlings performance through substrate formulation and co-inoculation with beneficial microorganism consortia. FRONTIERS IN PLANT SCIENCE 2023; 14:1222557. [PMID: 37521928 PMCID: PMC10382143 DOI: 10.3389/fpls.2023.1222557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023]
Abstract
Introduction Smart management in crop cultivation is increasingly supported by application of arbuscular mycorrhizal fungi (AMF) and plant growth-promoting microorganisms (PGPM), which sustain soil fertility and plant performance. The aim of this study was the evaluation of the effects of consortia composed of (Claroideoglomus claroideum BEG96, Claroideoglomus etunicatum BEG92, Funneliformis geosporum BEG199, Funneliformis mosseae BEG 95, and Rhizophagus irregularis BEG140) and PGPM (Azospirillum brasilense - AZ, or Saccharothrix sp. - S) on onion cultivated in growing media with a composition corresponding to a degraded soil. Methods Three types of substrate formulations were used, with peat:sand ratios of 50:50, 70:30, 100:0 (v:v). The analysis of substrate parameters crucial for its fertility (pH, salinity, sorption complex capacity, and elements' content) and characteristics reflecting onion seedlings' performance (fresh weight, stress biomarkers, and elements' content) was performed. Results AMF colonized onion roots in all treatments, showing increasing potential to form intercellular structures in the substrates rich in organic matter. Additionally, co-inoculation with PGPM microorganisms accelerated arbuscular mycorrhiza establishment. Increased antioxidant activity and glutathione peroxidase (GPOX) activity of onion roots sampled from the formulations composed of peat and sand in the ratio of 100:0, inoculated with AMF+S, and positive correlation between GPOX, fresh weight and antioxidant activity of onion roots reflected the successful induction of plant acclimatization response. Total phenols content was the highest in roots and leaves of onion grown in substrates with 70:30 peat:sand ratio, and, in the case of roots, it was correlated with AMF colonization parameters but not with antioxidant activity. Discussion AMF and PGPM efficiency in supporting onion growth should be linked to the increased onion root system capacity in mineral salts absorption, resulting in more efficient aboveground biomass production. AMF and PGPM consortia were effective in releasing minerals to soluble fraction in substrates rich in organic matter, making elements available for uptake by onion root system, though this phenomenon depended on the PGPM species. Microorganism consortia enhanced onion seedlings' performance also in substrates with lower content of organic carbon through plant biofertilization and phytostimulation.
Collapse
Affiliation(s)
- Robert Pokluda
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University, Brno, Czechia
| | - Lucia Nedorost Ragasová
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University, Brno, Czechia
| | - Miloš Jurica
- Department of Vegetable Sciences and Floriculture, Faculty of Horticulture, Mendel University, Brno, Czechia
| | - Andrzej Kalisz
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, Krakow, Poland
| | - Monika Komorowska
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Marcin Niemiec
- Department of Agricultural and Environmental Chemistry, Faculty of Agriculture and Economics, University of Agriculture, Krakow, Poland
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Maciej Gąstoł
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, Krakow, Poland
| | - Agnieszka Sekara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, Krakow, Poland
| |
Collapse
|
4
|
The ‘Edge Effect’ Phenomenon in Plants: Morphological, Biochemical and Mineral Characteristics of Border Tissues. DIVERSITY 2023. [DOI: 10.3390/d15010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The ‘edge’ effect is considered one of the fundamental ecological phenomena essential for maintaining ecosystem integrity. The properties of plant outer tissues (root, tuber, bulb and fruit peel, tree and shrub bark, leaf and stem trichomes) mimic to a great extent the ‘edge’ effect properties of different ecosystems, which suggests the possibility of the ‘edge’ effect being applicable to individual plant organisms. The most important characteristics of plant border tissues are intensive oxidant stress, high variability and biodiversity of protection mechanisms and high adsorption capacity. Wide variations in morphological, biochemical and mineral components of border tissues play an important role in the characteristics of plant adaptability values, storage duration of roots, fruit, tubers and bulbs, and the diversity of outer tissue practical application. The significance of outer tissue antioxidant status and the accumulation of polyphenols, essential oil, lipids and minerals, and the artificial improvement of such accumulation is described in connection with plant tolerance to unfavorable environmental conditions. Methods of plant ‘edge’ effect utilization in agricultural crop breeding, production of specific preparations with powerful antioxidant value and green nanoparticle synthesis of different elements have been developed. Extending the ‘edge’ effect phenomenon from ecosystems to individual organisms is of fundamental importance in agriculture, pharmacology, food industry and wastewater treatment processes.
Collapse
|
5
|
A Sustainable Intercropping System for Organically Produced Lettuce and Green Onion with the Use of Arbuscular Mycorrhizal Inocula. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) are efficient for improving crop production and quality in organic farming systems. Our objective was to examine the effects of two AMF inocula, Rhizophagus intraradices and Diversispora spp., against a non-inoculated control on lettuce and green onion grown organically in an intercropping cropping system. At time of harvest, colonization levels were very low, and not different compared to the control that was colonized by the native mycorrhizal community. The yield of inoculated lettuce and green onion was unchanged, as also observed in the root system architecture analysis parameters. In both crops, color was not affected, limiting the possibility for consumers to reject the product. Nitrate accumulation was well below the limits set by European Commission in all treatments. Sugar, chlorophyll, K, Na and P contents were also quantified, showing no particular variations. In AMF-treated lettuce, important phytochemical characteristics, such as phenol content and ascorbic acid, showed a tendency for reduced values, while antioxidant capacity was significantly reduced by both AMF treatments. The study provides a description about the effect of AMF on two important co-cultivated crops. Research should be continued in order to determine best matches between plant material and AMF inocula that could result in enhanced production and nutritional quality.
Collapse
|
6
|
Garlic (Allium sativum) feature-specific nutrient dosage based on using machine learning models. PLoS One 2022; 17:e0268516. [PMID: 35580085 PMCID: PMC9113611 DOI: 10.1371/journal.pone.0268516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 05/02/2022] [Indexed: 12/03/2022] Open
Abstract
Brazil presents large yield gaps in garlic crops partly due to nutrient mismanagement at local scale. Machine learning (ML) provides powerful tools to handle numerous combinations of yield-impacting factors that help reducing the number of assumptions about nutrient management. The aim of the current study is to customize fertilizer recommendations to reach high garlic marketable yield at local scale in a pilot study. Thus, collected 15 nitrogen (N), 24 phosphorus (P), and 27 potassium (K) field experiments conducted during the 2015 to 2017 period in Santa Catarina state, Brazil. In addition, 61 growers’ observational data were collected in the same region in 2018 and 2019. The data set was split into 979 experimental and observational data for model calibration and into 45 experimental data (2016) to test ML models and compare the results to state recommendations. Random Forest (RF) was the most accurate ML to predict marketable yield after cropping system (cultivar, preceding crops), climatic indices, soil test and fertilization were included features as predictor (R2 = 0.886). Random Forest remained the most accurate ML model (R2 = 0.882) after excluding cultivar and climatic features from the prediction-making process. The model suggested the application of 200 kg N ha-1 to reach maximum marketable yield in a test site in comparison to the 300 kg N ha-1 set as state recommendation. P and K fertilization also seemed to be excessive, and it highlights the great potential to reduce production costs and environmental footprint without agronomic loss. Garlic root colonization by arbuscular mycorrhizal fungi likely contributed to P and K uptake. Well-documented data sets and machine learning models could support technology transfer, reduce costs with fertilizers and yield gaps, and sustain the Brazilian garlic production.
Collapse
|
7
|
Role of Combined Inoculation with Arbuscular Mycorrhizal Fungi, as a Sustainable Tool, for Stimulating the Growth, Physiological Processes, and Flowering Performance of Lavender. SUSTAINABILITY 2022. [DOI: 10.3390/su14020951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Arbuscular mycorrhizal fungi (AMF) are essential soil microorganisms for terrestrial ecosystems and form beneficial symbioses with the root systems of most agricultural plants. The purpose of this paper was to examine the effect of the community of six AMF on the growth, physiological response, and flowering performance in organic potted lavender culture. The mixture of AMF containing Rhizophagus irregularis, Claroideoglomus claroideum, Funneliformis mosseae, Funneliformis geosporum, Claroideoglomus etunicatum, and Glomus microaggregatum was added in a pot with peat, volcanic rock, and coconut bark. We analyzed the fresh shoot biomass, root biomass, total plant biomass, leaf area, flowering performance, photosynthesis rate, and photosynthetic pigment content. Pearson’s correlation coefficient was performed to get a better understanding of the relationships between the studied variables. The total plant biomass was more pronounced in plants with AMF-S20g (212.01 g plant−1) and AMF-S30g (220.25 g plant−1) than with AMF-S10g (201.96 g plant−1) or in untreated plants (180.87 g plant−1). A statistically significant increase for Chl a, Chl b, and Car was found for AMF-S20g and AMF-S30. Our findings suggest that the AMF mixture application in a growing substrate with peat, coconut bark, and volcanic rock improved plant growth, physiological processes, and ornamental value in mycorrhizal lavender plants. This environmentally friendly agricultural practice could be used for the sustainable production of lavender.
Collapse
|
8
|
El-Sherbeny TMS, Mousa AM, El-Sayed ESR. Use of mycorrhizal fungi and phosphorus fertilization to improve the yield of onion ( Allium cepa L.) plant. Saudi J Biol Sci 2022; 29:331-338. [PMID: 35002426 PMCID: PMC8716904 DOI: 10.1016/j.sjbs.2021.08.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 11/10/2022] Open
Abstract
Improving the economical yield of commonly cultivated crops is one of the most pressing social and scientific issues in modern agriculture. This paper was conducted to investigate the bio-efficacy of arbuscular mycorrhizal fungi (AMF) in improving phosphorous (P) utilization and increasing the yield of onion plant grown in sandy soil under a drip irrigation system. The obtained results showed that AMF inoculation of onion and application of 120 kg P fertilizer ha−1 significantly increased the fresh and dry weights, chlorophyll content of onion as well as P concentration in the root, shoot, and bulb during two growing seasons. Moreover, AMF increased the bioavailability of P in the rhizosphere and significantly enhanced the N-utilization by the inoculated plant. The economic yield of the onion plant inoculated by AMF and fertilized by different doses of P fertilizer was much higher than that obtained by the control (without AMF). These findings indicated that inoculating the onion plant in the field with AMF could be very effective in increasing the yield of the onion plant. Additionally, this study suggests AMF as a low-cost and promising candidate for the sustainable production of the onion crop using reclaimed sandy soils and a drip irrigation system.
Collapse
Affiliation(s)
- T M S El-Sherbeny
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Abeer M Mousa
- Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - El-Sayed R El-Sayed
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
9
|
Divergence in Corn Mycorrhizal Colonization Patterns Due to Organic Treatment. PLANTS 2021; 10:plants10122760. [PMID: 34961236 PMCID: PMC8708519 DOI: 10.3390/plants10122760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 11/30/2022]
Abstract
Excessive application of chemical fertilizers and other agrochemicals can cause large imbalances in soils and agricultural ecosystems. In this context, mycorrhizae represent a viable solution to mitigate these negative effects. Arbuscular mycorrhizae are vital symbionts due to the multiple benefits they bring to both crops and the entire agroecosystem. The main purpose of this study was to observe whether differentiated fertilization has an influence on mycorrhizal colonization patterns in corn. Observed frequencies and intensities of colonization varied widely between phenophases and treatments, with 20% variation for frequency and 14% for intensity, which implies the constant development of both partners during the vegetation period. Arbuscules and vesicles were present in all development stages, but the overall mean was lower than 4% for arbuscules and 1% for vesicles in the analyzed root fragments. Intensity was highly correlated with frequency of colonization compared with arbuscules, where the coefficient was 0.54, and vesicles, with a coefficient of 0.16. Both PCA and NMDS provided good graphical solutions, with a high resolution due to explained variance and good spatial position of vectors. The use of mycorrhizal maps permits the full exploration of colonization patterns and fungal strategy, and the assessment of mycorrhizae-free areas. For the untreated variant, the strategy was oriented toward a longitudinal colonization followed by an irregular development of hyphae with multiple non-colonized areas. Treatment acts to stimulate the appearance of mycorrhizal spots, which further develop radially.
Collapse
|
10
|
Chen X, Krug L, Yang M, Berg G, Cernava T. The Himalayan Onion (Allium wallichii Kunth) Harbors Unique Spatially Organized Bacterial Communities. MICROBIAL ECOLOGY 2021; 82:909-918. [PMID: 33723621 PMCID: PMC8551121 DOI: 10.1007/s00248-021-01728-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Plant-associated microorganisms are known to contribute with various beneficial functions to the health and productivity of their hosts, yet the microbiome of most plants remains unexplored. This especially applies to wild relatives of cultivated plants, which might harbor beneficial microorganisms that were lost during intensive breeding. We studied bacterial communities of the Himalayan onion (Allium wallichii Kunth), a wild relative of onion native to mountains in East Asia. The bacterial community structure was assessed in different plant microhabitats (rhizosphere, endosphere, anthosphere) by sequencing of 16S rRNA gene fragment amplicons. Targeted bioinformatic analyses were implemented in order to identify unique features in each habitat and to map the overall community in the first representative of the Amaryllidaceae plant family. The highest bacterial diversity was found for bulk soil (Shannon index, H' 9.3) at the high-altitude sampling location. It was followed by the plant rhizosphere (H' 8.9) while communities colonizing flowers (H' 6.1) and the endosphere (H' 6.5 and 5.6) where less diverse. Interestingly, we observed a non-significant rhizosphere effect. Another specificity of the microbiome was its high evenness in taxonomic distribution, which was so far not observed in plant microbiomes. Pseudomonas was identified among additional 10 bacterial genera as a plant-specific signature. The first insights into the microbiome of a plant in the widespread Allium genus will facilitate upcoming comparisons with its domesticated relatives while additionally providing a detailed microbiome mapping of the plant's microhabitats to facilitate bioresource mining.
Collapse
Affiliation(s)
- Xiaoyulong Chen
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
- College of Tobacco Science, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Agricultural Microbiology, Guizhou University, Guiyang, 550025, China
- College of Science, Tibet University, Lhasa, 850012, China
| | - Lisa Krug
- Institute of Environmental Biotechnology, Graz University of Technology, 8010, Graz, Austria
| | - Maofa Yang
- College of Tobacco Science, Guizhou University, Guiyang, 550025, China
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, 8010, Graz, Austria
| | - Tomislav Cernava
- College of Tobacco Science, Guizhou University, Guiyang, 550025, China.
- Institute of Environmental Biotechnology, Graz University of Technology, 8010, Graz, Austria.
| |
Collapse
|
11
|
Golubkina N, Moldovan A, Kekina H, Kharchenko V, Sekara A, Vasileva V, Skrypnik L, Tallarita A, Caruso G. Joint Biofortification of Plants with Selenium and Iodine: New Field of Discoveries. PLANTS (BASEL, SWITZERLAND) 2021; 10:1352. [PMID: 34371555 PMCID: PMC8309223 DOI: 10.3390/plants10071352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 05/04/2023]
Abstract
The essentiality of selenium (Se) and iodine (I) to human beings and the widespread areas of selenium and iodine deficiency determine the high significance of functional food production with high levels of these elements. In this respect, joint biofortification of agricultural crops with Se and I is especially attractive. Nevertheless, in practice this topic has raised many problems connected with the possible utilization of many Se and I chemical forms, different doses and biofortification methods, and the existence of wide species and varietal differences. The limited reports relevant to this subject and the multiplicity of unsolved questions urge the need for an adequate evaluation of the results obtained up-to-date, useful for developing further future investigations. The present review discusses the outcome of joint plant Se-I biofortification, as well as factors affecting Se and I accumulation in plants, paying special attention to unsolved issues. A particular focus has been given to the prospects of herb sprouts production enriched with Se and I, as well as the interactions between the latter microelements and arbuscular-mycorrhizal fungi (AMF).
Collapse
Affiliation(s)
- Nadezhda Golubkina
- Laboratory Analytical Department, Federal Scientific Center of Vegetable Production, Moscow 143072, Russia; (A.M.); (V.K.)
| | - Anastasia Moldovan
- Laboratory Analytical Department, Federal Scientific Center of Vegetable Production, Moscow 143072, Russia; (A.M.); (V.K.)
| | - Helene Kekina
- Medical Academy of Post Graduate Education, Moscow 123995, Russia;
| | - Victor Kharchenko
- Laboratory Analytical Department, Federal Scientific Center of Vegetable Production, Moscow 143072, Russia; (A.M.); (V.K.)
| | - Agnieszka Sekara
- Department of Horticulture, Faculty of Biotechnology and Horticulture, University of Agriculture, 31-120 Krakow, Poland;
| | - Viliana Vasileva
- Institute of Forage Crops, 89 General Vladimir Vazov Str, 5802 Pleven, Bulgaria;
| | - Liubov Skrypnik
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad 236040, Russia;
| | - Alessio Tallarita
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy; (A.T.); (G.C.)
| | - Gianluca Caruso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy; (A.T.); (G.C.)
| |
Collapse
|
12
|
Bhantana P, Rana MS, Sun XC, Moussa MG, Saleem MH, Syaifudin M, Shah A, Poudel A, Pun AB, Bhat MA, Mandal DL, Shah S, Zhihao D, Tan Q, Hu CX. Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis 2021. [DOI: 10.1007/s13199-021-00756-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Roles of Arbuscular Mycorrhizal Fungi on Plant Growth and Performance: Importance in Biotic and Abiotic Stressed Regulation. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12100370] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish symbiotic associations with most terrestrial plants. These soil microorganisms enhance the plant’s nutrient uptake by extending the root absorbing area. In return, the symbiont receives plant carbohydrates for the completion of its life cycle. AMF also helps plants to cope with biotic and abiotic stresses such as salinity, drought, extreme temperature, heavy metal, diseases, and pathogens. For abiotic stresses, the mechanisms of adaptation of AMF to these stresses are generally linked to increased hydromineral nutrition, ion selectivity, gene regulation, production of osmolytes, and the synthesis of phytohormones and antioxidants. Regarding the biotic stresses, AMF are involved in pathogen resistance including competition for colonization sites and improvement of the plant’s defense system. Furthermore, AMF have a positive impact on ecosystems. They improve the quality of soil aggregation, drive the structure of plant and bacteria communities, and enhance ecosystem stability. Thus, a plant colonized by AMF will use more of these adaptation mechanisms compared to a plant without mycorrhizae. In this review, we present the contribution of AMF on plant growth and performance in stressed environments.
Collapse
|
14
|
Moustakas M, Bayçu G, Sperdouli I, Eroğlu H, Eleftheriou EP. Arbuscular Mycorrhizal Symbiosis Enhances Photosynthesis in the Medicinal Herb Salvia fruticosa by Improving Photosystem II Photochemistry. PLANTS 2020; 9:plants9080962. [PMID: 32751534 PMCID: PMC7463761 DOI: 10.3390/plants9080962] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/12/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
We investigated the influence of Salvia fruticosa colonization by the arbuscular mycorrhizal fungi (AMF) Rhizophagus irregularis on photosynthetic function by using chlorophyll fluorescence imaging analysis to evaluate the light energy use in photosystem II (PSII) of inoculated and non-inoculated plants. We observed that inoculated plants used significantly higher absorbed energy in photochemistry (ΦPSII) than non-inoculated and exhibited significant lower excess excitation energy (EXC). However, the increased ΦPSII in inoculated plants did not result in a reduced non-regulated energy loss in PSII (ΦNO), suggesting the same singlet oxygen (1O2) formation between inoculated and non-inoculated plants. The increased ΦPSII in inoculated plants was due to an increased efficiency of open PSII centers to utilize the absorbed light (Fv'/Fm') due to a decreased non-photochemical quenching (NPQ) since there was no difference in the fraction of open reaction centers (qp). The decreased NPQ in inoculated plants resulted in an increased electron-transport rate (ETR) compared to non-inoculated. Yet, inoculated plants exhibited a higher efficiency of the water-splitting complex on the donor side of PSII as revealed by the increased Fv/Fo ratio. A spatial heterogeneity between the leaf tip and the leaf base for the parameters ΦPSII and ΦNPQ was observed in both inoculated and non-inoculated plants, reflecting different developmental zones. Overall, our findings suggest that the increased ETR of inoculated S. fruticosa contributes to increased photosynthetic performance, providing growth advantages to inoculated plants by increasing their aboveground biomass, mainly by increasing leaf biomass.
Collapse
Affiliation(s)
- Michael Moustakas
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (G.B.); (H.E.)
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence: (M.M.); (E.P.E.)
| | - Gülriz Bayçu
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (G.B.); (H.E.)
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Demeter, Thermi, 57001 Thessaloniki, Greece;
| | - Hilal Eroğlu
- Department of Biology, Faculty of Science, Istanbul University, 34134 Istanbul, Turkey; (G.B.); (H.E.)
- Biology Division, Institute of Graduate Studies in Science, Istanbul University, 34134 Istanbul, Turkey
| | - Eleftherios P. Eleftheriou
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence: (M.M.); (E.P.E.)
| |
Collapse
|