1
|
Hamidan MFR, Nadzir MNHM, Shohaimi S, Bidin H, Samat N. Effect on Growth Performance and Nutritive Value of Cultivated Azolla filiculoides As An Alternative Feedstuff for Ruminant. Trop Life Sci Res 2024; 35:265-292. [PMID: 39464658 PMCID: PMC11507978 DOI: 10.21315/tlsr2024.35.3.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/16/2024] [Indexed: 10/29/2024] Open
Abstract
Azolla filiculoides is a tiny, free-floating aquatic fern and has a potential alternative protein and fibre source for ruminants, was investigated for its cultivation optimisation and feedstuff suitability. Study 1 was conducted to investigate the influence of different fertiliser types (control, broiler manure, sheep manure, cow manure) and concentrations (0.25 g/L-1.25 g/L) on the growth performance (fresh weight, doubling time, relative growth rate) and nutrient composition (dry matter, ash, crude protein, crude fibre, crude fat) of A. filiculoides. The optimised type of fertiliser and concentration in Study 1 were further adopted in Study 2 to evaluate the effect of different fertiliser processing methods on the growth performance, nutritive value and in vitro rumen digestibility of A. filiculoides upon cultivation. The findings in Study 1 showed that cultivation of A. filiculoides using sheep manure at the concentration of 1.00 g/L is the best resulted in the shortest doubling time (3 to 5 days) and produced fresh weight (FW), relative growth rate (RGR), crude protein (CP) and crude fibre (CF) at 132.2 g/m2, 0.32 g/g/day, 21.2% DM-1 and 14.4% DM-1, respectively. Furthermore, unprocessed sheep manure (T3) exhibited superior (p < 0.05) fresh weight, relative growth rate, nutrient composition and fibre components compared to the burned manure treatment (T2). In vitro digestibility analysis discovered that T3 achieved a 24-hour accumulated gas production of 86.9 mL DM-1, with in vitro dry matter digestibility (IVDMD), in vitro organic matter digestibility (IVOMD) and metabolisable energy (ME) of 82.9%, 43.7% and 5.8 MJ/kg DM, respectively. These findings suggest that Azolla filiculoides cultivation can be economically optimised using 1.00 g/L unprocessed sheep manure (fresh manure), potentially serving as a self-produced, nutritious feedstuff for ruminants.
Collapse
Affiliation(s)
- Mohammad Fitri Rimi Hamidan
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Livestock Science Research Centre, MARDI Headquarters, 43400 Serdang, Selangor, Malaysia
| | | | - Shamarina Shohaimi
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Habsah Bidin
- Livestock Science Research Centre, MARDI Headquarters, 43400 Serdang, Selangor, Malaysia
| | - Noraini Samat
- Livestock Science Research Centre, MARDI Headquarters, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Mandal RR, Bashir Z, Mandal JR, Raj D. Potential strategies for phytoremediation of heavy metals from wastewater with circular bioeconomy approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:502. [PMID: 38700594 DOI: 10.1007/s10661-024-12680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/27/2024] [Indexed: 06/01/2024]
Abstract
Water pollution is an inextricable problem that stems from natural and human-related factors. Unfortunately, with rapid industrialization, the problem has escalated to alarming levels. The pollutants that contribute to water pollution include heavy metals (HMs), chemicals, pesticides, pharmaceuticals, and other industrial byproducts. Numerous methods are used for treating HMs in wastewater, like ion exchange, membrane filtration, chemical precipitation, adsorption, and electrochemical treatment. But the remediation through the plant, i.e., phytoremediation is the most sustainable approach to remove the contaminants from wastewater. Aquatic plants illustrate the capacity to absorb excess pollutants including organic and inorganic compounds, HMs, and pharmaceutical residues present in agricultural, residential, and industrial discharges. The extensive exploitation of these hyperaccumulator plants can be attributed to their abundance, invasive mechanisms, potential for bioaccumulation, and biomass production. Post-phytoremediation, plant biomass can be toxic to both water bodies and soil. Therefore, the circular bioeconomy approach can be applied to reuse and repurpose the toxic plant biomass into different circular bioeconomy byproducts such as biochar, biogas, bioethanol, and biodiesel is essential. In this regard, the current review highlights the potential strategies for the phytoremediation of HMs in wastewater and various strategies to efficiently reuse metal-enriched biomass material and produce commercially valuable products. The implementation of circular bioeconomy practices can help overcome significant obstacles and build a new platform for an eco-friendlier lifestyle.
Collapse
Affiliation(s)
- Rashmi Ranjan Mandal
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Zahid Bashir
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India
| | - Jyoti Ranjan Mandal
- Electro-Membrane Processes Laboratory, Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Deep Raj
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, 522503, Andhra Pradesh, India.
| |
Collapse
|
3
|
Shah G, Bhatt U, Singh H, Kumar D, Sharma J, Strasser RJ, Soni V. Ecotoxicological assessment of cigarette butts on morphology and photosynthetic potential of Azolla pinnata. BMC PLANT BIOLOGY 2024; 24:300. [PMID: 38637728 PMCID: PMC11061998 DOI: 10.1186/s12870-024-04991-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 04/05/2024] [Indexed: 04/20/2024]
Abstract
Cigarette butts (CBs) have become the most ubiquitous form of anthropogenic litter globally. CBs contain various hazardous chemicals that persist in the environment for longer period. These substances are susceptible to leaching into the environment through waterways. The recent study was aimed to evaluate the effects of disposed CBs on the growth and development of Azolla pinnata, an aquatic plant. It was found that after a span of 6 days, the root length, surface area, number of fronds, and photosynthetic efficacy of plant were considerably diminished on the exposure of CBs (concentrations 0 to 40). The exposure of CBs led to a decrease in the FM, FV/F0, and φP0, in contrast, the φD0 increased in response to CBs concentration. Moreover, ABS/CSm, TR0/CSm, and ET0/CSm displayed a negative correlation with CB-induced chemical stress. The performance indices were also decreased (p-value ≤ 0.05) at the highest concentration of CBs. LD50 and LD90 represent the lethal dose, obtained value for LD50 is 20.30 CBs and LD90 is 35.26 CBs through probit analysis. Our results demonstrate that the CBs cause irreversible damage of photosynthetic machinery in plants and also reflect the efficacy of chlorophyll a fluorescence analysis and JIP test for assessing the toxicity of CBs in plants.
Collapse
Affiliation(s)
- Garishma Shah
- Plant Bioenergetics and Biochemistry Lab, Mohanlal Sukhadia University, Udaipur, Rajasthan, India, 313001
| | - Upma Bhatt
- Plant Bioenergetics and Biochemistry Lab, Mohanlal Sukhadia University, Udaipur, Rajasthan, India, 313001
| | - Hanwant Singh
- Plant Bioenergetics and Biochemistry Lab, Mohanlal Sukhadia University, Udaipur, Rajasthan, India, 313001
| | - Deepak Kumar
- Plant Bioenergetics and Biochemistry Lab, Mohanlal Sukhadia University, Udaipur, Rajasthan, India, 313001
| | - Jyotshana Sharma
- Plant Bioenergetics and Biochemistry Lab, Mohanlal Sukhadia University, Udaipur, Rajasthan, India, 313001
| | - Reto J Strasser
- Plant Bioenergetics Laboratory, University of Geneva, Jussy, 1254, Geneva, Switzerland
| | - Vineet Soni
- Plant Bioenergetics and Biochemistry Lab, Mohanlal Sukhadia University, Udaipur, Rajasthan, India, 313001.
| |
Collapse
|
4
|
Purwanti IF, Abdullah SRS, Hamzah A, Idris M, Basri H, Latif MT, Mukhlisin M, Kurniawan SB, Imron MF. Maximizing diesel removal from contaminated sand using Scirpus mucronatus and assessment of rhizobacteria addition effect. Heliyon 2023; 9:e21737. [PMID: 38027659 PMCID: PMC10665750 DOI: 10.1016/j.heliyon.2023.e21737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Phytoremediation is one of the green technologies that is friendly to nature, utilizes fewer chemicals, and exhibits good performance. In this study, phytoremediation was used to treat diesel-contaminated sand using a local aquatic plant species, Scirpus mucronatus, by analyzing the amount of total petroleum hydrocarbons (TPHs). Optimization of diesel removal was performed according to Response Surface Methodology (RSM) using Box-Behnken Design (BBD) under pilot-scale conditions. The quadratic model showed the best fit to describe the obtained data. Actual vs. predicted values from BBD showed a total of 9.1 % error for the concentration of TPH in sand and 0 % error for the concentration of TPH in plants. Maximum TPH removal of 42.3 ± 2.1 % was obtained under optimized conditions at a diesel initial concentration of 50 mg/kg, an aeration rate of 0.48 L/min, and a retention time of 72 days. The addition of two species of rhizobacteria (Bacillus subtilis and Bacillus licheniformis) at optimum conditions increased the TPH removal to 51.9 ± 2.6 %. The obtained model and optimum condition can be adopted to treat diesel-contaminated sand within the same TPH range (50-3000 mg/kg) in sand.
Collapse
Affiliation(s)
- Ipung Fitri Purwanti
- Department of Environmental Engineering, Faculty of Civil, Planning, And Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Ainon Hamzah
- School of Bioscience and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Mushrifah Idris
- Tasik Chini Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | - Hassan Basri
- Department of Civil and Structural Engineering, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | - Mohd Talib Latif
- School of Environmental Science and Natural Resources, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Malaysia
| | - Muhammad Mukhlisin
- Department of Civil Engineering, Politeknik Negeri Semarang, 50275 Semarang, Indonesia
| | - Setyo Budi Kurniawan
- Laboratory of Algal Biotechnology, Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Opatovický Mlýn, Novohradská 237, 379 81 Třeboň, Czech Republic
| | - Muhammad Fauzul Imron
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
- Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, CN Delft 2628, Netherlands
| |
Collapse
|
5
|
Chua MX, Cheah YT, Tan WH, Chan DJC. A novel cultivation platform of duckweed (Lemna minor) via application of beeswax superhydrophobic coatings. ENVIRONMENTAL RESEARCH 2023; 224:115544. [PMID: 36822535 DOI: 10.1016/j.envres.2023.115544] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Conventional establishment of laboratory cultures of duckweed Lemna minor are prepared in beakers, Erlenmeyer flasks or Schott bottles. These conventional cultivation methods limit the available surface area for growth which then causes layering of fronds that reduces the efficiency of plants in sunlight capturing. Here, acrylic sheets were spray-coated with a superhydrophobic (SHP) beeswax suspension and these coated acrylic sheets were used as a novel cultivation platform for L. minor. L. minor was grown for 7 days in conventional glass jar which acted as the control and were compared to SHP coated acrylic (SHPA) and SHP coated acrylic with aluminium mesh centrally placed (SHPAM) at similar duration and cultivation conditions. Addition of mesh was to entrap the plantlets and fixed the plantlets' position on the growing platform. The effects of cultivation platforms on growth rate and biochemical compositions of L. minor were monitored. The highest biomass growth was obtained from SHPA cultivation where the relative growth rate (RGR) was 0.0909 ± 0.014 day-1 and the RGR was 2.17 times higher than the control. Moreover, L. minor harvested from SHPA displayed the highest values in total protein content, total carbohydrates content and crude lipid percentage. The values were 156.04 ± 12.13 mg/g, 94.75 ± 9.02 mg/g and 7.09 ± 1.14% respectively. However, the control showed the highest total chlorophyll content which was 0.7733 ± 0.042 mg/g FW. Although SHPA obtained a slightly lower chlorophyll content than the control, this growing platform is still promising as it displayed the highest growth rate as well as other biochemical composition. Hence, this study proved that the proposed method that applied superhydrophobic properties in cultivation of L. minor provided a larger surface area for L. minor to grow, which then resulted in a greater biomass production while simultaneously maintaining the quality of the biochemical compositions of duckweeds.
Collapse
Affiliation(s)
- Mei Xia Chua
- School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Yi Tong Cheah
- School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Win Hung Tan
- School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Derek Juinn Chieh Chan
- School of Chemical Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
6
|
Polińska W, Piotrowska-Niczyporuk A, Karpińska J, Struk-Sokołowska J, Kotowska U. Mechanisms, toxicity and optimal conditions - research on the removal of benzotriazoles from water using Wolffia arrhiza. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 847:157571. [PMID: 35882328 DOI: 10.1016/j.scitotenv.2022.157571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
In the presented work, phytoremediation with the use of floating plant Wolffia arrhiza (L.) Horkel ex Wimm. was proposed as a method of removing the selected benzotriazoles (BTRs): 1H-benzotriazole (1H-BTR), 4-methyl-1H-benzotriazole (4M-BTR), 5-methyl-1H-benzotriazole (5M-BTR) and 5-chlorobenzotriazole (5Cl-BTR) from water. The efficiency of phytoremediation depends on three factors: daily time of exposure to light, pH of the model solution, and the amount of plans. Using a design of experiment (DoE) methods the following optimal values were selected: plant amount 1.8 g, light exposure 13 h and pH 7 per 100 mL of the model solution. It was found that the loss of BTRs in optimal conditions ranged from 92 to 100 % except for 4M-BTR, for which only 23 % of removal was achieved after 14 days of cultivation of W. arrhiza. The half-life values for studied compounds ranged from 0.98 days for 5Cl-BTR to 36.19 for 4M-BTR. The observed rapid vanishing of 5M-BTR is supposed by the simultaneous transformation of 5M-BTR into 4M-BTR. The detailed study of BTRs degradation pointed that the plant uptake is mainly responsible for the benzotriazoles concentration decrease. Toxicity tests showed that the tested organic compounds induce oxidative stress in W. arrhiza, which manifested among others, in reduced levels of chlorophyll in cultures with benzotriazoles compared to control.
Collapse
Affiliation(s)
- Weronika Polińska
- Doctoral School of Exact and Natural Sciences, University of Bialystok, Ciolkowskiego 1K Str., 15-245 Bialystok, Poland.
| | - Alicja Piotrowska-Niczyporuk
- Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J Street, 15-245 Bialystok, Poland.
| | - Joanna Karpińska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Str., 15-245 Bialystok, Poland.
| | - Joanna Struk-Sokołowska
- Department of Environmental Engineering Technology, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland.
| | - Urszula Kotowska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciolkowskiego 1K Str., 15-245 Bialystok, Poland.
| |
Collapse
|
7
|
Characterization of Various Subunit Combinations of ADP-Glucose Pyrophosphorylase in Duckweed (Landoltia punctata). BIOMED RESEARCH INTERNATIONAL 2022; 2022:5455593. [PMID: 35309169 PMCID: PMC8927976 DOI: 10.1155/2022/5455593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
Abstract
Background Landoltia punctata can be used as renewable and sustainable biofuel feedstock because it can quickly accumulate high starch levels. ADP-glucose pyrophosphorylase (AGPase) catalyzes the first committed step during starch biosynthesis in higher plants. The heterotetrameric structure of plant AGPases comprises pairs of large subunits (LSs) and small subunits (SSs). Although several studies have reported on the high starch accumulation capacity of duckweed, no study has explored the underlying molecular accumulation mechanisms and their linkage with AGPase. Therefore, this study focused on characterizing the roles of different L. punctate AGPases. Methodology. Expression patterns of LpAGPs were determined through comparative transcriptome analyses, followed by coexpressing their coding sequences in Escherichia coli, Saccharomyces cerevisiae, Arabidopsis thaliana, and Nicotiana tabacum. Results Comparative transcriptome analyses showed that there are five AGPase subunits encoding cDNAs in L. punctata (LpAGPS1, LpAGPS2, LpAGPL1, LpAGPL2, and LpAGPL3). Nutrient starvation (distilled water treatment) significantly upregulated the expression of LpAGPS1, LpAGPL2, and LpAGPL3. Coexpression of LpAGPSs and LpAGPLs in Escherichia coli generated six heterotetramers, but only four (LpAGPS1/LpAGPL3, LpAGPS2/LpAGPL1, LpAGPS2/LpAGPL2, and LpAGPS2/LpAGPL3) exhibited AGPase activities and displayed a brownish coloration upon exposure to iodine staining. Yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays validated the interactions between LpAGPS1/LpAGPL2, LpAGPS1/LpAGPL3, LpAGPS2/LpAGPL1, LpAGPS2/LpAGPL2, and LpAGPS2/LpAGPL3. All the five LpAGPs were fusion-expressed with hGFP in Arabidopsis protoplasts, and their green fluorescence signals were uniformly localized in the chloroplast, indicating that they are plastid proteins. Conclusions This study uncovered the cDNA sequences, structures, subunit interactions, expression patterns, and subcellular localization of AGPase. Collectively, these findings provide new insights into the molecular mechanism of fast starch accumulation in L. punctata.
Collapse
|
8
|
Kurniawan SB, Ahmad A, Said NSM, Imron MF, Abdullah SRS, Othman AR, Purwanti IF, Hasan HA. Macrophytes as wastewater treatment agents: Nutrient uptake and potential of produced biomass utilization toward circular economy initiatives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148219. [PMID: 34380263 DOI: 10.1016/j.scitotenv.2021.148219] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/05/2021] [Accepted: 05/29/2021] [Indexed: 06/13/2023]
Abstract
Macrophytes have been widely used as agents in wastewater treatment. The involvement of plants in wastewater treatment cannot be separated from wetland utilization. As one of the green technologies in wastewater treatment plants, wetland exhibits a great performance, especially in removing nutrients from wastewater before the final discharge. It involves the use of plants and consequently produces plant biomasses as treatment byproducts. The produced plant biomasses can be utilized or converted into several valuable compounds, but related information is still limited and scattered. This review summarizes wastewater's nutrient content (macro and micronutrient) that can support plant growth and the performance of constructed wetland (CW) in performing nutrient uptake by using macrophytes as treatment agents. This paper further discusses the potential of the utilization of the produced plant biomasses as bioenergy production materials, including bioethanol, biohydrogen, biogas, and biodiesel. This paper also highlights the conversion of plant biomasses into animal feed, biochar, adsorbent, and fertilizer, which may support clean production and circular economy efforts. The presented review aims to emphasize and explore the utilization of plant biomasses and their conversion into valuable products, which may solve problems related to plant biomass handling during the adoption of CW in wastewater treatment plants.
Collapse
Affiliation(s)
- Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Azmi Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Department of Polytechnic Education and Community College, Ministry of Higher Education, 62100 Putrajaya, Malaysia.
| | - Nor Sakinah Mohd Said
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Muhammad Fauzul Imron
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia.
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Ipung Fitri Purwanti
- Department of Environmental Engineering, Faculty of Civil Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia.
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| |
Collapse
|
9
|
Sarma MK, Ramkumar N, Subudhi S. Biohydrogen Production from Aquatic Plant and Algae Biomass by
Enterobacter cloacae
Strain DT‐1. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mrinal Kumar Sarma
- DBT–TERI Centre of Excellence in Advanced Biofuels and Bio–commodities The Energy and Resources Institute Darbari Seth Block, Habitat Place, Lodhi Road 110 003 New Delhi India
| | - N. Ramkumar
- DBT–TERI Centre of Excellence in Advanced Biofuels and Bio–commodities The Energy and Resources Institute Darbari Seth Block, Habitat Place, Lodhi Road 110 003 New Delhi India
| | - Sanjukta Subudhi
- DBT–TERI Centre of Excellence in Advanced Biofuels and Bio–commodities The Energy and Resources Institute Darbari Seth Block, Habitat Place, Lodhi Road 110 003 New Delhi India
| |
Collapse
|
10
|
Kandasamy S, Narayanan M, He Z, Liu G, Ramakrishnan M, Thangavel P, Pugazhendhi A, Raja R, Carvalho IS. Current strategies and prospects in algae for remediation and biofuels: An overview. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Insights into the Use of Phytoremediation Processes for the Removal of Organic Micropollutants from Water and Wastewater; A Review. WATER 2021. [DOI: 10.3390/w13152065] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Greater awareness of micropollutants present in water and wastewater motivates the search for effective methods of their neutralization. Although their concentration in waters is measured in micro- and nanograms per liter, even at those levels, they may cause serious health consequences for different organisms, including harmful effects on the functioning of the endocrine system of vertebrates. Traditional methods of wastewater treatment, especially biological methods used in municipal wastewater treatment plants, are not sufficiently effective in removing these compounds, which results in their presence in natural waters. The growing interest in phytoremediation using constructed wetlands as a method of wastewater treatment or polishing indicates a need for the evaluation of this process in the context of micropollutant removal. Therefore, the present work presents a systematic review of the effectiveness in the removal of micropollutants from polluted waters by processes based on plant used. The article also analyzes issues related to the impact of micropollutants on the physiological processes of plants as well as changes in general indicators of pollution caused by contact of wastewater with plants. Additionally, it is also the first review of the literature that focuses strictly on the removal of micropollutants through the use of constructed wetlands.
Collapse
|
12
|
Anaerobic Degradation of Environmentally Hazardous Aquatic Plant Pistia stratiotes and Soluble Cu(II) Detoxification by Methanogenic Granular Microbial Preparation. ENERGIES 2021. [DOI: 10.3390/en14133849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The aquatic plant Pistia stratiotes L. is environmentally hazardous and requires effective methods for its utilization. The harmfulness of these plants is determined by their excessive growth in water bodies and degradation of local aquatic ecosystems. Mechanical removal of these plants is widespread but requires fairly resource-intensive technology. However, these aquatic plants are polymer-containing substrates and have a great potential for conversion into bioenergy. The aim of the work was to determine the main patterns of Pistia stratiotes L. degradation via granular microbial preparation (GMP) to obtain biomethane gas while simultaneously detoxifying toxic copper compounds. The composition of the gas phase was determined via gas chromatography. The pH and redox potential parameters were determined potentiometrically, and Cu(II) concentration photocolorimetrically. Applying the preparation, high efficiency of biomethane fermentation of aquatic plants and Cu(II) detoxification were achieved. Biomethane yield reached 68.0 ± 11.1 L/kg VS of Pistia stratiotes L. biomass. The plants’ weight was decreased by 9 times. The Cu(II) was completely removed after 3 and 10 days of fermentation from initial concentrations of 100 ppm and 200 ppm, respectively. The result confirms the possibility of using the GMP to obtain biomethane from environmentally hazardous substrates and detoxify copper-contaminated fluids.
Collapse
|
13
|
Chen G, Stepanenko A, Borisjuk N. Mosaic Arrangement of the 5S rDNA in the Aquatic Plant Landoltia punctata (Lemnaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:678689. [PMID: 34249048 PMCID: PMC8264772 DOI: 10.3389/fpls.2021.678689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Duckweeds are a group of monocotyledonous aquatic plants in the Araceae superfamily, represented by 37 species divided into five genera. Duckweeds are the fastest growing flowering plants and are distributed around the globe; moreover, these plants have multiple applications, including biomass production, wastewater remediation, and making pharmaceutical proteins. Dotted duckweed (Landoltia punctata), the sole species in genus Landoltia, is one of the most resilient duckweed species. The ribosomal DNA (rDNA) encodes the RNA components of ribosomes and represents a significant part of plant genomes but has not been comprehensively studied in duckweeds. Here, we characterized the 5S rDNA genes in L. punctata by cloning and sequencing 25 PCR fragments containing the 5S rDNA repeats. No length variation was detected in the 5S rDNA gene sequence, whereas the nontranscribed spacer (NTS) varied from 151 to 524 bp. The NTS variants were grouped into two major classes, which differed both in nucleotide sequence and the type and arrangement of the spacer subrepeats. The dominant class I NTS, with a characteristic 12-bp TC-rich sequence present in 3-18 copies, was classified into four subclasses, whereas the minor class II NTS, with shorter, 9-bp nucleotide repeats, was represented by two identical sequences. In addition to these diverse subrepeats, class I and class II NTSs differed in their representation of cis-elements and the patterns of predicted G-quadruplex structures, which may influence the transcription of the 5S rDNA. Similar to related duckweed species in the genus Spirodela, L. punctata has a relatively low rDNA copy number, but in contrast to Spirodela and the majority of other plants, the arrangement of the 5S rDNA units demonstrated an unusual, heterogeneous pattern in L. punctata, as revealed by analyzing clones containing double 5S rDNA neighboring units. Our findings may further stimulate the research on the evolution of the plant rDNA and discussion of the molecular forces driving homogenization of rDNA repeats in concerted evolution.
Collapse
Affiliation(s)
- Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology Around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
14
|
Tran TLN, Miranda AF, Abeynayake SW, Mouradov A. Differential Production of Phenolics, Lipids, Carbohydrates and Proteins in Stressed and Unstressed Aquatic Plants, Azolla filiculoides and Azolla pinnata. BIOLOGY 2020; 9:biology9100342. [PMID: 33086671 PMCID: PMC7603371 DOI: 10.3390/biology9100342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 12/23/2022]
Abstract
The metabolic plasticity of shikimate and phenylpropanoid pathways redirects carbon flow to different sink products in order to protect sessile plants from environmental stresses. This study assessed the biochemical responses of two Azolla species, A. filiculoides and A. pinnata, to the combined effects of environmental and nutritional stresses experienced while growing outdoors under Australian summer conditions. These stresses triggered a more than 2-fold increase in the production of total phenols and their representatives, anthocyanins (up to 18-fold), flavonoids (up to 4.7-fold), and condensed tannins (up to 2.7-fold), which led to intense red coloration of the leaves. These changes were also associated with an increase in the concentration of carbohydrates and a decrease in concentrations of lipids and total proteins. Changes in lipid biosynthesis did not cause significant changes in concentrations of palmitoleic acid (C16:0), linolenic acid (C18:3), and linoleic acid (C18:2), the fatty acid signatures of Azolla species. However, a reduction in protein production triggered changes in biosynthesis of alanine, arginine, leucine, tyrosine, threonine, valine, and methionine amino acids. Stress-triggered changes in key nutritional components, phenolics, lipids, proteins, and carbohydrates could have a significant impact on the nutritional value of both Azolla species, which are widely used as a sustainable food supplement for livestock, poultry, and fish industries.
Collapse
Affiliation(s)
- Thi Linh Nham Tran
- School of Sciences, RMIT University, Bundoora, VIC 3083, Australia; (T.L.N.T.); (A.F.M.); (S.W.A.)
- Faculty of Agriculture, Bac Lieu University, 8 wards, Bac Lieu 960000, Vietnam
| | - Ana F. Miranda
- School of Sciences, RMIT University, Bundoora, VIC 3083, Australia; (T.L.N.T.); (A.F.M.); (S.W.A.)
| | - Shamila Weerakoon Abeynayake
- School of Sciences, RMIT University, Bundoora, VIC 3083, Australia; (T.L.N.T.); (A.F.M.); (S.W.A.)
- Department of Animal, Plant and Soil Sciences, Centre for AgriBiosciences, La Trobe University, Bundoora, VIC 3086, Australia
| | - Aidyn Mouradov
- School of Sciences, RMIT University, Bundoora, VIC 3083, Australia; (T.L.N.T.); (A.F.M.); (S.W.A.)
- Correspondence: ; Tel.: +61-3-99257144
| |
Collapse
|