1
|
Singh Rawat S, Laxmi A. Light at the end of the tunnel: integrating signaling pathways in the coordination of lateral root development. Biochem Soc Trans 2024; 52:1895-1908. [PMID: 39171690 DOI: 10.1042/bst20240049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Root system architecture (RSA) encompasses a range of physical root attributes, including the lateral roots (LRs), root hairs and adventitious roots, in addition to the primary or main root. This overall structure is a crucial trait for efficient water and mineral capture alongside providing anchorage to the plant in the soil and is vital for plant productivity and fitness. RSA dynamics are dependent upon various environmental cues such as light, soil pH, water, mineral nutrition and the belowground microbiome. Among these factors, light signaling through HY5 significantly influences the flexibility of RSA by controlling different signaling pathways that converge at photoreceptors-mediated signaling, also present in the 'hidden half'. Furthermore, several phytohormones also drive the formation and emergence of LRs and are critical to harmonize intra and extracellular stimuli in this regard. This review endeavors to elucidate the impact of these interactions on RSA, with particular emphasis on LR development and to enhance our understanding of the fundamental mechanisms governing the light-regulation of LR growth and physiology.
Collapse
Affiliation(s)
- Sanjay Singh Rawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
2
|
Paponov M, Ziegler J, Paponov IA. Light exposure of roots in aeroponics enhances the accumulation of phytochemicals in aboveground parts of the medicinal plants Artemisia annua and Hypericum perforatum. FRONTIERS IN PLANT SCIENCE 2023; 14:1079656. [PMID: 36743490 PMCID: PMC9893289 DOI: 10.3389/fpls.2023.1079656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Light acts as a trigger to enhance the accumulation of secondary compounds in the aboveground part of plants; however, whether a similar triggering effect occurs in roots is unclear. Using an aeroponic setup, we investigated the effect of long-term exposure of roots to LED lighting of different wavelengths on the growth and phytochemical composition of two high-value medicinal plants, Artemisia annua and Hypericum perforatum. In A. annua, root exposure to white, blue, and red light enhanced the accumulation of artemisinin in the shoots by 2.3-, 2.5-, and 1.9-fold, respectively. In H. perforatum, root exposure to white, blue, red, and green light enhanced the accumulation of coumaroylquinic acid in leaves by 89, 65, 84, and 74%, respectively. Root lighting also increased flavonol concentrations. In contrast to its effects in the shoots, root illumination did not change phytochemical composition in the roots or root exudates. Thus, root illumination induces a systemic response, resulting in modulation of the phytochemical composition in distal tissues remote from the light exposure site.
Collapse
Affiliation(s)
- Martina Paponov
- Department of Horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Division of Food Production and Society, Ås, Norway
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Ivan A. Paponov
- Department of Horticulture, Norwegian Institute of Bioeconomy Research (NIBIO), Division of Food Production and Society, Ås, Norway
- Department of Food Science, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
Cabrera J, Conesa CM, Del Pozo JC. May the dark be with roots: a perspective on how root illumination may bias in vitro research on plant-environment interactions. THE NEW PHYTOLOGIST 2022; 233:1988-1997. [PMID: 34942016 DOI: 10.1111/nph.17936] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Roots anchor plants to the soil, providing them with nutrients and water while creating a defence network and facilitating beneficial interactions with a multitude of living organisms and climatological conditions. To facilitate morphological and molecular studies, root research has been conducted using in vitro systems. However, under natural conditions, roots grow in the dark, mainly in the absence of illumination, except for the relatively low illumination of the upper soil surface, and this has been largely ignored. Here, we discuss the results found over the last decade on how experimental exposure of roots to light may bias root development and responses through the alteration of hormonal signalling, cytoskeleton organization, reactive oxygen species or the accumulation of flavonoids, among other factors. Illumination alters the uptake of nutrients or water, and also affects the response of the roots to abiotic stresses and root interactions with the microbiota. Furthermore, we review in vitro systems created to maintain roots in darkness, and provide a comparative analysis of root transcriptomes obtained with these devices. Finally, we identify other experimental variables that should be considered to better mimic soil conditions, whose improvement would benefit studies using in vitro cultivation or enclosed ecosystems.
Collapse
Affiliation(s)
- Javier Cabrera
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (UPM-INIA/CSIC), UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Carlos M Conesa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (UPM-INIA/CSIC), UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Agroambiental y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| | - Juan C Del Pozo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (UPM-INIA/CSIC), UPM, Campus de Montegancedo, Pozuelo de Alarcón, 28223, Madrid, Spain
| |
Collapse
|
4
|
Gilliard G, Huby E, Cordelier S, Ongena M, Dhondt-Cordelier S, Deleu M. Protoplast: A Valuable Toolbox to Investigate Plant Stress Perception and Response. FRONTIERS IN PLANT SCIENCE 2021; 12:749581. [PMID: 34675954 PMCID: PMC8523952 DOI: 10.3389/fpls.2021.749581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/14/2021] [Indexed: 05/08/2023]
Abstract
Plants are constantly facing abiotic and biotic stresses. To continue to thrive in their environment, they have developed many sophisticated mechanisms to perceive these stresses and provide an appropriate response. There are many ways to study these stress signals in plant, and among them, protoplasts appear to provide a unique experimental system. As plant cells devoid of cell wall, protoplasts allow observations at the individual cell level. They also offer a prime access to the plasma membrane and an original view on the inside of the cell. In this regard, protoplasts are particularly useful to address essential biological questions regarding stress response, such as protein signaling, ion fluxes, ROS production, and plasma membrane dynamics. Here, the tools associated with protoplasts to comprehend plant stress signaling are overviewed and their potential to decipher plant defense mechanisms is discussed.
Collapse
Affiliation(s)
- Guillaume Gilliard
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Eloïse Huby
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
- RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardenne, Reims, France
| | - Sylvain Cordelier
- RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardenne, Reims, France
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| | - Sandrine Dhondt-Cordelier
- RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne Ardenne, Reims, France
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| |
Collapse
|
5
|
Wang X, Feng C, Tian L, Hou C, Tian W, Hu B, Zhang Q, Ren Z, Niu Q, Song J, Kong D, Liu L, He Y, Ma L, Chu C, Luan S, Li L. A transceptor-channel complex couples nitrate sensing to calcium signaling in Arabidopsis. MOLECULAR PLANT 2021; 14:774-786. [PMID: 33601051 DOI: 10.1016/j.molp.2021.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/03/2021] [Accepted: 02/11/2021] [Indexed: 05/24/2023]
Abstract
Nitrate-induced Ca2+ signaling is crucial for the primary nitrate response in plants. However, the molecular mechanism underlying the generation of the nitrate-specific calcium signature remains unknown. We report here that a cyclic nucleotide-gated channel (CNGC) protein, CNGC15, and the nitrate transceptor (NRT1.1) constitute a molecular switch that controls calcium influx depending on nitrate levels. The expression of CNGC15 is induced by nitrate, and its protein is localized at the plasma membrane after establishment of young seedlings. We found that disruption of CNGC15 results in the loss of the nitrate-induced Ca2+ signature (primary nitrate response) and retards root growth, reminiscent of the phenotype observed in the nrt1.1 mutant. We further showed that CNGC15 is an active Ca2+-permeable channel that physically interacts with the NRT1.1 protein in the plasma membrane. Importantly, we discovered that CNGC15-NRT1.1 interaction silences the channel activity of the heterocomplex, which dissociates upon a rise in nitrate levels, leading to reactivation of the CNGC15 channel. The dynamic interactions between CNGC15 and NRT1.1 therefore control the channel activity and Ca2+ influx in a nitrate-dependent manner. Our study reveals a new nutrient-sensing mechanism that utilizes a nutrient transceptor-channel complex assembly to couple nutrient status to a specific Ca2+ signature.
Collapse
Affiliation(s)
- Xiaohan Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China; State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Changxin Feng
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - LiLi Tian
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Congcong Hou
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Wang Tian
- College of Life Sciences, Capital Normal University, Beijing 100048, China; Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Bin Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Zhijie Ren
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Qi Niu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jiali Song
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Dongdong Kong
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Liangyu Liu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China.
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Legong Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
6
|
Thibivilliers S, Anderson D, Libault M. Isolation of Plant Root Nuclei for Single Cell RNA Sequencing. ACTA ACUST UNITED AC 2020; 5:e20120. [PMID: 33034428 DOI: 10.1002/cppb.20120] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The characterization of the transcriptional similarities and differences existing between plant cells and cell types is important to better understand the biology of each cell composing the plant, to reveal new molecular mechanisms controlling gene activity, and to ultimately implement meaningful strategies to enhance plant cell biology. To gain a deeper understanding of the regulation of plant gene activity, the individual transcriptome of each plant cell needs to be established. Until recently, single cell approaches were mostly limited to bulk transcriptomic studies on selected cell types. Accessing specific cell types required the development of labor-intensive strategies. Recently, single cell sequencing strategies were successfully applied on isolated Arabidopsis thaliana root protoplasts. However, this strategy relies on the successful isolation of viable protoplasts upon the optimization of the enzymatic cocktails required to digest the cell wall and on the compatibility of fragile plant protoplasts with the use of microfluidic systems to generate single cell transcriptomic libraries. To overcome these difficulties, we present a simple and fast alternative strategy: the isolation and use of plant nuclei to access meaningful transcriptomic information from plant cells. This protocol was specifically developed to enable the use of the plant nuclei with 10× Genomics' Chromium technology partitions technology. Briefly, the plant nuclei are released from the root by chopping into a nuclei isolation buffer before purification by filtration then nuclei sorting. Upon sorting, the nuclei are resuspended in a low divalent ion buffer compatible with the Chromium technology in order to create single nuclei ribonucleic acid-sequencing libraries (sNucRNA-seq). © 2020 Wiley Periodicals LLC. Basic Protocol 1: Arabidopsis seed sterilization and planting Basic Protocol 2: Nuclei isolation from Arabidopsis roots Basic Protocol 3: Fluorescent-activated nuclei sorting (FANS) purification Support Protocol: Estimation of nuclei density using Countess II automated cell counter Alternate Protocol 1: Proper growth conditions for Medicago truncatula and Sorghum bicolor Alternate Protocol 2: Estimation of nuclei density using sNucRNA-seq technology.
Collapse
Affiliation(s)
- Sandra Thibivilliers
- Center for Plant Science Innovation, Department of Agronomy and Horticulture, Beadle Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Dirk Anderson
- Flow Cytometry Service Center, Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Marc Libault
- Center for Plant Science Innovation, Department of Agronomy and Horticulture, Beadle Center, University of Nebraska-Lincoln, Lincoln, Nebraska
| |
Collapse
|
7
|
Eseverri Á, Baysal C, Medina V, Capell T, Christou P, Rubio LM, Caro E. Transit Peptides From Photosynthesis-Related Proteins Mediate Import of a Marker Protein Into Different Plastid Types and Within Different Species. FRONTIERS IN PLANT SCIENCE 2020; 11:560701. [PMID: 33101328 PMCID: PMC7545105 DOI: 10.3389/fpls.2020.560701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 09/07/2020] [Indexed: 06/01/2023]
Abstract
Nucleus-encoded plastid proteins are synthesized as precursors with N-terminal targeting signals called transit peptides (TPs), which mediate interactions with the translocon complexes at the outer (TOC) and inner (TIC) plastid membranes. These complexes exist in multiple isoforms in higher plants and show differential specificity and tissue abundance. While some show specificity for photosynthesis-related precursor proteins, others distinctly recognize nonphotosynthetic and housekeeping precursor proteins. Here we used TPs from four Arabidopsis thaliana proteins, three related to photosynthesis (chlorophyll a/b binding protein, Rubisco activase) and photo-protection (tocopherol cyclase) and one involved in the assimilation of ammonium into amino-acids, and whose expression is most abundant in the root (ferredoxin dependent glutamate synthase 2), to determine whether they were able to mediate import of a nuclear-encoded marker protein into plastids of different tissues of a dicot and a monocot species. In A. thaliana, import and processing efficiency was high in all cases, while TP from the rice Rubisco small chain 1, drove very low import in Arabidopsis tissues. Noteworthy, our results show that Arabidopsis photosynthesis TPs also mediate plastid import in rice callus, and in leaf and root tissues with almost a 100% efficiency, providing new biotechnological tools for crop improvement strategies based on recombinant protein accumulation in plastids by the expression of nuclear-encoded transgenes.
Collapse
Affiliation(s)
- Álvaro Eseverri
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Can Baysal
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Vicente Medina
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Teresa Capell
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Lleida, Spain
| | - Paul Christou
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| | - Luis M. Rubio
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Elena Caro
- Centre for Plant Biotechnology and Genomics, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|