1
|
Lei H, Fan Y, Xiao Z, Jin C, Chen Y, Pan H. Comprehensive Evaluation of Tomato Growth Status under Aerated Drip Irrigation Based on Critical Nitrogen Concentration and Nitrogen Nutrient Diagnosis. PLANTS (BASEL, SWITZERLAND) 2024; 13:270. [PMID: 38256824 PMCID: PMC10818335 DOI: 10.3390/plants13020270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
In order to provide a theoretical basis for the rational application of nitrogen fertilizer for tomatoes under aerated drip irrigation, a model of the critical nitrogen dilution curve was established in this study, and the feasibility of the nitrogen nutrition index (NNI) for the real-time diagnosis and evaluation of the nitrogen nutrient status was explored. The tomato variety "FENOUYA" was used as the test crop, and aerated drip irrigation was adopted by setting three levels of aeration rates, namely, A1 (dissolved oxygen concentration of irrigation water is 5 mg L-1), A2 (dissolved oxygen concentration of irrigation water is 15 mg L-1), and A3 (dissolved oxygen concentration of irrigation water is 40 mg L-1), and three levels of nitrogen rates, namely, N1 (120 kg ha-1), N2 (180 kg ha-1) and N3 (240 kg ha-1). The model of the critical nitrogen concentration dilution of tomatoes under different aerated treatments was established. The results showed that (1) the dry matter accumulation of tomatoes increased with the increase in the nitrogen application rate in a certain range and it showed a trend of first increase and then decrease with the increase in aeration rate. (2) As the reproductive period progressed, the nitrogen concentration in tomato plants showed a decreasing trend. (3) There was a power exponential relationship between the critical nitrogen concentration of tomato plant growth and above-ground biomass under different levels of aeration and nitrogen application rate, but the power exponential curves were characterized by A1 (Nc = 15.674DM-0.658), A2 (Nc = 101.116DM-0.455), A3 (Nc = 119.527DM-0.535), N1 (Nc = 33.819DM-0.153), N2 (Nc = 127.759DM-0.555) and N3 (Nc = 209.696DM-0.683). The standardized root mean square error (n-RMSE) values were 0.08%, 3.68%, 3.79% 0.50%, 1.08%, and 0.55%, which were less than 10%, and the model has good stability. (4) The effect of an increased nitrogen application rate on the critical nitrogen concentration dilution curve was more significant than that of the increase in aeration rate. (5) A nitrogen nutrition index model was built based on the critical nitrogen concentration model to evaluate the nitrogen nutritional status of tomatoes, whereby 180 kg ha-1 was the optimal nitrogen application rate, and 15 mg L-1 dissolved oxygen of irrigation water was the optimal aeration rate for tomatoes.
Collapse
Affiliation(s)
| | | | | | | | | | - Hongwei Pan
- School of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450046, China; (H.L.); (Y.F.); (Z.X.); (C.J.); (Y.C.)
| |
Collapse
|
2
|
Zheng Y, Yang Z, Luo J, Zhang Y, Jiang N, Khattak WA. Transcriptome analysis of sugar and acid metabolism in young tomato fruits under high temperature and nitrogen fertilizer influence. FRONTIERS IN PLANT SCIENCE 2023; 14:1197553. [PMID: 37538068 PMCID: PMC10394703 DOI: 10.3389/fpls.2023.1197553] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/27/2023] [Indexed: 08/05/2023]
Abstract
Introduction Environmental temperature and nitrogen (N) fertilizer are two important factors affecting the sugar and organic acid content of tomato fruit. N is an essential nutrient element for plant growth and development, and plays a key role in regulating plant growth, fruit quality and stress response. However, the comparative effect of different N fertilizer levels on the accumulation of soluble sugar and organic acid in tomato young fruit under high temperature stress and its mechanism are still unknown. Methods Three N fertilizer levels (N1, N2, N3) combined with two temperatures (28/18°C, CK; 35/25°C, HT) were used to study the effects of N fertilizer, HT and their interaction on the soluble sugar and organic acid components, content, metabolic enzyme activity and the expression level of key genes in tomato young fruit, revealing how N fertilizer affects the sugar and organic acid metabolism of tomato young fruit under HT at physiological and molecular levels. Results The content of soluble sugar and organic acid in tomato young fruit under HT exposure was increased by appropriate N fertilizer (N1) treatment, which was due to the accumulation of glucose, fructose, citric acid and malic acid. High N (N3) and HT exposure had a negative impact on soluble sugar and reduce sugar accumulation. Further studies showed that due to the up-regulation of the expression of sucrose metabolizing enzyme genes (CWINV2, HK2, SPS, PK) and sucrose transporter (SUT1, SUT4, SWEETs) in tomato, N fertilizer increased the accumulation of soluble sugar by improving the sucrose metabolism, absorption intensity and sucrose transport of fruit under HT exposure. Due to the increase of PEPC gene expression, N fertilizer increased the accumulation of citric acid and malic acid by improving the TCA cycle of fruit under HT exposure. Discussion Nitrogen fertilizer can improve the heat tolerance of tomato young fruits by improving sugar metabolism under HT exposure. The results can provide theoretical support for the correct application of N fertilizer to improve the quality of tomato fruit under HT exposure.
Collapse
Affiliation(s)
- Yanjiao Zheng
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Zaiqiang Yang
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Jing Luo
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Yao Zhang
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Nan Jiang
- Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
| | - Wajid Ali Khattak
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
3
|
Sun Y, Zhu G, Zhao W, Jiang Y, Wang Q, Wang Q, Rui Y, Zhang P, Gao L. Engineered Nanomaterials for Improving the Nutritional Quality of Agricultural Products: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4219. [PMID: 36500842 PMCID: PMC9736685 DOI: 10.3390/nano12234219] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
To ensure food safety, the current agricultural development has put forward requirements for improving nutritional quality and reducing the harmful accumulation of agricultural chemicals. Nano-enabled sustainable agriculture and food security have been increasingly explored as a new research frontier. Nano-fertilizers show the potential to be more efficient than traditional fertilizers, reducing the amount used while ensuring plant uptake, supplying the inorganic nutrients needed by plants, and improving the process by which plants produce organic nutrients. Other agricultural uses of nanotechnology affect crop productivity and nutrient quality in addition to nano-fertilizers. This article will review the research progress of using nanomaterials to improve nutritional quality in recent years and point out the focus of future research.
Collapse
Affiliation(s)
- Yi Sun
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Weichen Zhao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yaqi Jiang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Qibin Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Quanlong Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
- China Agricultural University Professor’s Workstation of Yuhuangmiao Town, Shanghe County, Jinan 250061, China
- China Agricultural University Professor’s Workstation of Sunji Town, Shanghe County, Jinan 250061, China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Li Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
4
|
Nitrogen Reduction Combined with Organic Materials Can Stabilize Crop Yield and Soil Nutrients in Winter Rapeseed and Maize Rotation in Yellow Soil. SUSTAINABILITY 2022. [DOI: 10.3390/su14127183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Objective: To investigate the effect of nitrogen reduction combined with organic materials on crop growth of winter rapeseed and maize rotation in yellow soil. Methods: A 2-year, four-season winter rapeseed and maize rotation experiment using three organic materials (biochar (B), commercial organic fertilizer (O) and straw (S), 3000 kg·hm−2) and three nitrogen application rates (100%, 85% and 70%) was carried out from 2018 to 2020 in Guizhou Province, China. By comprehensively analyzing the crop yield, biomass and nutrient absorption, soil nutrients indicators, and the efficiency of nitrogen fertilizer was calculated. Results: All organic materials could increase the yield of both crops, and 100% N + O treatment was the best, and the 2-year winter rapeseed and maize yields reached 3069 kg·hm−2, 3215 kg·hm−2 and 11,802 kg·hm−2, 11,912 kg·hm−2, respectively. When nitrogen application was reduced by 15%, the addition of the three organic materials could stabilize or increase the yield and biomass, and nitrogen, phosphorus and potassium absorption in both crops showed an increasing trend, which could improve or maintain soil nutrients. When nitrogen application was reduced by 30%, the yields of two crops with organic materials addition were lower than those of 100% N treatment. Through the interaction, it was found that nitrogen and organic material were the main reasons for the increase in yield, respectively. Conclusions: The addition of three organic materials can replace 15% of nitrogen fertilizer. It is recommended to apply 153.0 kg·hm−2 and 127.5 kg·hm−2 of nitrogen fertilizer in winter rapeseed and maize seasons, respectively, in the rotation area of Guizhou yellow soil, with the addition of 3000 kg·hm−2 organic materials, most appropriately commercial organic fertilizer.
Collapse
|
5
|
Schmidt-Szantner B, Gasztonyi M, Milotay P, Tömösközi-Farkas R. Effect of irrigation and fertilisation on the biologically active components of tomato. ACTA ALIMENTARIA 2022. [DOI: 10.1556/066.2022.00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AbstractA three-year (2016–2018) open field experiment was conducted to study the effect of irrigation, fertilisation, and seasonal variation on the main bioactive components, such as carotenoids (lycopene and β-carotene), total polyphenols, antioxidant capacity, and tocopherols of processed Uno Rosso F1 tomato. The statistical evaluation of measurements proved that the multi-year data set cannot be evaluated as combined data set; the values obtained in different years must be evaluated separately. The impact of irrigation on the content of bioactive components varied from year to year. The correlation was negative between irrigation and α-tocopherol content in 2016 and 2018 (r = –0.567 and –0.605, respectively), polyphenol content in 2016 (r = –0.668), γ-tocopherol content in 2017 (r = –0.662), while positive correlation was observed between concentration of vitamin C (r = 0.533) in 2017, lycopene content (r = 0.473) in 2018 and irrigation intensity. A weak correlation was proved between K levels and concentrations of lycopene and polyphenols in 2016 (r = 0.301 and r = 0.392, respectively).
Collapse
Affiliation(s)
- B. Schmidt-Szantner
- Vegetable Research Center, Hungarian University of Agriculture and Life Sciences, Obermayer Ernő tér 9, H-6300 Kalocsa, Hungary
| | - M. Gasztonyi
- Food Science Research Group, Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Herman Ottó út 15, H-1022 Budapest, Hungary
| | - P. Milotay
- Vegetable Research Center, Hungarian University of Agriculture and Life Sciences, Obermayer Ernő tér 9, H-6300 Kalocsa, Hungary
| | - R. Tömösközi-Farkas
- Food Science Research Group, Food Science and Technology Institute, Hungarian University of Agriculture and Life Sciences, Herman Ottó út 15, H-1022 Budapest, Hungary
| |
Collapse
|
6
|
Postharvest Quality Evolution in Long Shelf-Life “Vesuviano” Tomato Landrace. SUSTAINABILITY 2021. [DOI: 10.3390/su132111885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
“Vesuviano” or “piennolo” tomato is among the most famous Italian small tomato landraces and is cultivated on the slopes of Vesuvio volcano (Southern Italy). The “piennolo” tomato is an interesting case with regard to its potential sustainability, as it is traditionally grown in water-deficit conditions with a low fertilizer input. Fruits with a high firmness and a thick skin can be stored for 3–4 months at room temperature (“long shelf-life” or LSL tomato) without postharvest fungicide applications. The aim of this research was to study the retention, changes in quality, and nutritional traits of “Vesuviano” tomatoes over 120 days of “natural” storage. The dry matter, soluble sugar, organic acids, volatile compounds, and carotenoid contents were evaluated at harvesting and in fruits stored for 40, 80, and 120 days. Slight decreases in dry matter content, soluble sugars, and sweetness index were found, while the organic acids levels remained relatively stable. Moreover, interesting increases in the concentrations of certain flavor volatiles, alcohols, aldehydes, and terpenes were detected. Regarding carotenoids, the total lycopene levels exhibited a 1.5-fold increase from harvest to 120 days. The unchanged lycopene cis-isomer levels and the β-carotene/total lycopene ratio is characteristic of relatively stable isomerization activity and indicated an optimal ripening pattern up until the end of the “natural” storage period. These results, which demonstrate good overall quality retention of this LSL tomato, represent a well-grounded reason to enhance the cultivation and marketing of this genetic resource, the fruits of which can be appreciated by consumers during the winter–early spring, when high-quality fresh tomatoes are not available on the markets.
Collapse
|
7
|
Lee YJ, Lee WJ, Le QT, Hong SW, Lee H. Growth Performance Can Be Increased Under High Nitrate and High Salt Stress Through Enhanced Nitrate Reductase Activity in Arabidopsis Anthocyanin Over-Producing Mutant Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:644455. [PMID: 34276717 PMCID: PMC8280297 DOI: 10.3389/fpls.2021.644455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/17/2021] [Indexed: 06/02/2023]
Abstract
Nitrogen is one of the most important macro-nutrients for plant growth and crop productivity. The amount of synthetic nitrogen fertilizers supplied to crops has dramatically increased, leading to a notable rise in crop yields. However, excessive nitrogen use has an enormous negative impact on ecosystems and human health through the emission of intense greenhouse gases, such as nitric oxide derived from the nitrate (NO3 -) assimilation cascade. Additionally, owing to the development of extensive irrigation in agriculture, crops are known to suffer from high salt stress. The effect of excessive nitrogen fertilizer application has been studied in some crops, but the effect of high nitrate level and salt stress on plant stress tolerance has not been studied in detail. Therefore, in this study we aimed to study the effects of high concentrations of NO3 - on salt stress tolerance in Arabidopsis. In addition, since anthocyanin functions as a reactive oxygen species (ROS) scavenger under abiotic stress conditions, we investigated whether enhanced anthocyanin content helps Arabidopsis to withstand higher salt stress levels under high NO3 - concentrations by using pap1-D/fls1ko double mutant plants, which accumulate excessive amount of anthocyanin. We found that Col-0 plants are more sensitive to salt stress under high NO3 - concentrations. Although both the pap1-D/fls1ko and fls1ko plants accumulated higher anthocyanin levels and radical scavenging activities than Col-0 plants under both normal and salt stress conditions, the fls1ko plants exhibited much better growth than the pap1-D/fls1ko plants. It appears that the enhanced NR activities and transcript levels of NIA1 and NIA2 in pap1-D/fls1ko and fls1ko plants led to an increase in the synthesis of proteins and proline, which increases osmolytes against salt stress. Our results demonstrate that optimal levels of anthocyanin accumulation can enhance growth performance of plants under high NO3 - and salt stress conditions.
Collapse
Affiliation(s)
- Ye Ji Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Won Je Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, South Korea
| | - Quang Tri Le
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Suk-Whan Hong
- Department of Molecular Biotechnology, Bioenergy Research Center, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Hojoung Lee
- Department of Plant Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
- Institute of Life Science and Natural Resources, Korea University, Seoul, South Korea
| |
Collapse
|
8
|
Valorization of Spent Coffee Grounds, Biochar and other residues to Produce Lightweight Clay Ceramic Aggregates Suitable for Nursery Grapevine Production. HORTICULTURAE 2020. [DOI: 10.3390/horticulturae6040058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The valorization of agro-industrial by-products is one of the key strategies to improve agricultural sustainability. In the present study, spent coffee grounds and biochar were used as pore forming agents in the realization of lightweight clay ceramic aggregates that were used as sustainable fertilizers, in addition to tailored glass fertilizer containing phosphorous (P) and potassium (K) and nitrogen (N) synthetic fertilizer, for nursery grapevine production. The obtained fertilizers were assessed in a pot experiment for the fertilization of bare-rooted vines. Unfertilized (T0) and fertilized plants (T1, using NPK-containing commercial fertilizer) were used as controls. Plants fertilized by spent coffee grounds and spent coffee grounds + biochar-containing lightweight aggregates and added with 30 wt% of the above-mentioned glass and N fertilizers (T2 and T3, respectively) recorded higher values of plant height, shoot diameter, leaf and node numbers. Moreover, T2 treatment induced the highest chlorophyll content, shoot and root dry weights. The present study shows that lightweight clay ceramic aggregates containing spent coffee grounds and glass and N fertilizers can be used for nursery grapevine production, in turn improving the agricultural sustainability.
Collapse
|