1
|
Höschele T, Malagol N, Bori SO, Müllner S, Töpfer R, Sturm J, Zyprian E, Trapp O. Rpv10.2: A Haplotype Variant of Locus Rpv10 Enables New Combinations for Pyramiding Downy Mildew Resistance Traits in Grapevine. PLANTS (BASEL, SWITZERLAND) 2024; 13:2624. [PMID: 39339604 PMCID: PMC11434656 DOI: 10.3390/plants13182624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
In viticulture, pathogens like the oomycete Plasmopara viticola, the causal agent of downy mildew, can cause severe yield loss and require extensive application of plant protection chemicals. Breeders are generating pathogen-resistant varieties exploiting American and Asian wild Vitis germplasm as sources of resistance. Several loci mediating resistance to P. viticola have been identified in the past but may be overcome by specifically adapted strains of the pathogen. Aiming to find and characterize novel loci, a cross population with Vitis amurensis ancestry was investigated searching for resistance-correlated quantitative trait loci (QTL). As a prerequisite, a genetic map was generated by analyzing the 244 F1 individuals derived from a cross of the downy mildew susceptible Vitis vinifera cultivar 'Tigvoasa' and the resistant V. amurensis pBC1 breeding line We 90-06-12. This genetic map is based on the information from 627 molecular markers including 56 simple sequence repeats and 571 rhAmpSeq markers. A phenotypic characterization of the progeny showed a clear segregation of the resistance traits in the F1 population after an experimental inoculation of leaf discs with downy mildew. Combining genetic and phenotypic data, an analysis for QTL revealed a major locus on linkage Group 9 that correlates strongly with the resistance to downy mildew. The locus was mapped to a region of about 80 kb on the PN40024 (12x.V2) grapevine reference genome. This genomic region co-localizes with the formerly identified locus Rpv10 from the grapevine cultivar 'Solaris'. As we found different allele sizes of the locus-linked SSR markers than those characterizing the known Rpv10 locus and differences in the sequence of a candidate gene, it was regarded as a haplotype variant and named Rpv10.2.
Collapse
Affiliation(s)
- Tim Höschele
- Staatliche Lehr- und Versuchsanstalt im Wein- und Obstbau Weinsberg (LVWO), Traubenplatz 5, 74189 Weinsberg, Germany
| | - Nagarjun Malagol
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute (JKI), 76833 Siebeldingen, Germany
| | - Salvador Olivella Bori
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute (JKI), 76833 Siebeldingen, Germany
| | - Sophia Müllner
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute (JKI), 76833 Siebeldingen, Germany
| | - Reinhard Töpfer
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute (JKI), 76833 Siebeldingen, Germany
| | - Jürgen Sturm
- Staatliche Lehr- und Versuchsanstalt im Wein- und Obstbau Weinsberg (LVWO), Traubenplatz 5, 74189 Weinsberg, Germany
| | - Eva Zyprian
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute (JKI), 76833 Siebeldingen, Germany
| | - Oliver Trapp
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn Institute (JKI), 76833 Siebeldingen, Germany
| |
Collapse
|
2
|
Shi M, Savoi S, Sarah G, Soriano A, Weber A, Torregrosa L, Romieu C. Vitis rotundifolia Genes Introgressed with RUN1 and RPV1: Poor Recombination and Impact on V. vinifera Berry Transcriptome. PLANTS (BASEL, SWITZERLAND) 2024; 13:2095. [PMID: 39124212 PMCID: PMC11314213 DOI: 10.3390/plants13152095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024]
Abstract
Thanks to several Vitis vinifera backcrosses with an initial V. vinifera L. × V. rotundifolia (previously Muscadinia rotundifolia) interspecific cross, the MrRUN1/MrRPV1 locus (resistance to downy and powdery mildews) was introgressed in genotypes phenotypically close to V. vinifera varieties. To check the consequences of introgressing parts of the V. rotundifolia genome on gene expression during fruit development, we conducted a comparative RNA-seq study on single berries from different V. vinifera cultivars and V. vinifera × V. rotundifolia hybrids, including 'G5' and two derivative microvine lines, 'MV102' (resistant) and 'MV32' (susceptible) segregating for the MrRUN1/RPV1 locus. RNA-Seq profiles were analyzed on a comprehensive set of single berries from the end of the herbaceous plateau to the ripe stage. Pair-end reads were aligned both on V. vinifera PN40024.V4 reference genome, V. rotundifolia cv 'Trayshed' and cv 'Carlos', and to the few resistance genes from the original V. rotundifolia cv '52' parent available at NCBI. Weighted Gene Co-expression Network Analysis (WGCNA) led to classifying the differentially expressed genes into 15 modules either preferentially correlated with resistance or berry phenology and composition. Resistance positively correlated transcripts predominantly mapped on the 4-5 Mb distal region of V. rotundifolia chromosome 12 beginning with the MrRUN1/MrRPV1 locus, while the negatively correlated ones mapped on the orthologous V. vinifera region, showing this large extremity of LG12 remained recalcitrant to internal recombination during the successive backcrosses. Some constitutively expressed V. rotundifolia genes were also observed at lower densities outside this region. Genes overexpressed in developing berries from resistant accessions, either introgressed from V. rotundifolia or triggered by these in the vinifera genome, spanned various functional groups, encompassing calcium signal transduction, hormone signaling, transcription factors, plant-pathogen-associated interactions, disease resistance proteins, ROS and phenylpropanoid biosynthesis. This transcriptomic insight provides a foundation for understanding the disease resistance inherent in these hybrid cultivars and suggests a constitutive expression of NIR NBS LRR triggering calcium signaling. Moreover, these results illustrate the magnitude of transcriptomic changes caused by the introgressed V. rotundifolia background in backcrossed hybrids, on a large number of functions largely exceeding the ones constitutively expressed in single resistant gene transformants.
Collapse
Affiliation(s)
- Mengyao Shi
- UMR AGAP Institute, University Montpellier, CIRAD, INRAE, Institute Agro, 34090 Montpellier, France; (M.S.); (G.S.); (A.S.); (A.W.)
| | - Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco, TO, Italy;
| | - Gautier Sarah
- UMR AGAP Institute, University Montpellier, CIRAD, INRAE, Institute Agro, 34090 Montpellier, France; (M.S.); (G.S.); (A.S.); (A.W.)
- UMT Geno-Vigne, IFV-INRAE-Institute Agro, 34060 Montpellier, France;
| | - Alexandre Soriano
- UMR AGAP Institute, University Montpellier, CIRAD, INRAE, Institute Agro, 34090 Montpellier, France; (M.S.); (G.S.); (A.S.); (A.W.)
| | - Audrey Weber
- UMR AGAP Institute, University Montpellier, CIRAD, INRAE, Institute Agro, 34090 Montpellier, France; (M.S.); (G.S.); (A.S.); (A.W.)
| | - Laurent Torregrosa
- UMT Geno-Vigne, IFV-INRAE-Institute Agro, 34060 Montpellier, France;
- LEPSE, University Montpellier, CIRAD, INRAE, Institute Agro, 34060 Montpellier, France
| | - Charles Romieu
- UMR AGAP Institute, University Montpellier, CIRAD, INRAE, Institute Agro, 34090 Montpellier, France; (M.S.); (G.S.); (A.S.); (A.W.)
- UMT Geno-Vigne, IFV-INRAE-Institute Agro, 34060 Montpellier, France;
| |
Collapse
|
3
|
Possamai T, Scota L, Velasco R, Migliaro D. A Sustainable Strategy for Marker-Assisted Selection (MAS) Applied in Grapevine ( Vitis spp.) Breeding for Resistance to Downy ( Plasmopara Viticola) and Powdery ( Erysiphe Necator) Mildews. PLANTS (BASEL, SWITZERLAND) 2024; 13:2001. [PMID: 39065527 PMCID: PMC11280485 DOI: 10.3390/plants13142001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/04/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Plant breeders utilize marker-assisted selection (MAS) to identify favorable or unfavorable alleles in seedlings early. In this task, they need methods that provide maximum information with minimal input of time and economic resources. Grape breeding aimed at producing cultivars resistant to pathogens employs several resistance loci (Rpv, Ren, and Run) that are ideal for implementing MAS. In this work, a sustainable MAS protocol was developed based on non-purified DNA (crude), multiplex PCR of SSR markers, and capillary electrophoresis, and its application on grapevine seedlings to follow some main resistance loci was described. The optimized protocol was utilized on 8440 samples and showed high efficiency, reasonable throughput (2-3.2 min sample), easy handling, flexibility, and tolerable costs (reduced by at least 3.5 times compared to a standard protocol). The Rpv, Ren, and Run allelic data analysis did not show limitations to loci combination and pyramiding, but segregation distortions were frequent and displayed both low (undesired) and high rates of inheritance. The protocol and results presented are useful tools for grape breeders and beyond, and they can address sustainable changes in MAS. Several progenies generated have valuable pyramided resistance and will be the subject of new studies and implementation in the breeding program.
Collapse
Affiliation(s)
| | | | | | - Daniele Migliaro
- CREA—Research Center for Viticulture and Enology, 31015 Conegliano, Italy; (L.S.); (R.V.)
| |
Collapse
|
4
|
Macia FM, Possamai T, Dorne MA, Lacombe MC, Duchêne E, Merdinoglu D, Peeters N, Rousseau D, Wiedemann-Merdinoglu S. Phenotyping grapevine resistance to downy mildew: deep learning as a promising tool to assess sporulation and necrosis. PLANT METHODS 2024; 20:90. [PMID: 38872155 DOI: 10.1186/s13007-024-01220-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Downy mildew is a plant disease that affects all cultivated European grapevine varieties. The disease is caused by the oomycete Plasmopara viticola. The current strategy to control this threat relies on repeated applications of fungicides. The most eco-friendly and sustainable alternative solution would be to use bred-resistant varieties. During breeding programs, some wild Vitis species have been used as resistance sources to introduce resistance loci in Vitis vinifera varieties. To ensure the durability of resistance, resistant varieties are built on combinations of these loci, some of which are unfortunately already overcome by virulent pathogen strains. The development of a high-throughput machine learning phenotyping method is now essential for identifying new resistance loci. RESULTS Images of grapevine leaf discs infected with P. viticola were annotated with OIV 452-1 values, a standard scale, traditionally used by experts to assess resistance visually. This descriptor takes two variables into account the complete phenotype of the symptom: sporulation and necrosis. This annotated dataset was used to train neural networks. Various encoders were used to incorporate prior knowledge of the scale's ordinality. The best results were obtained with the Swin transformer encoder which achieved an accuracy of 81.7%. Finally, from a biological point of view, the model described the studied trait and identified differences between genotypes in agreement with human observers, with an accuracy of 97% but at a high-throughput 650% faster than that of humans. CONCLUSION This work provides a fast, full pipeline for image processing, including machine learning, to describe the symptoms of grapevine leaf discs infected with P. viticola using the OIV 452-1, a two-symptom standard scale that considers sporulation and necrosis. If symptoms are frequently assessed by visual observation, which is time-consuming, low-throughput, tedious, and expert dependent, the method developed sweeps away all these constraints. This method could be extended to other pathosystems studied on leaf discs where disease symptoms are scored with ordinal scales.
Collapse
Affiliation(s)
- Felicià Maviane Macia
- Laboratoire des Interactions Plantes Micro-organismes Environnement (LIPME), INRAE, CNRS, Université de Toulouse, Chem. de Borde Rouge, Castanet-Tolosan, France
- Université d'Angers, LARIS, INRAE, IRHS, Angers, France
- Santé de la Vigne et Qualité du Vin (SVQV), INRAE, Université de Strasbourg, Colmar, France
| | - Tyrone Possamai
- Santé de la Vigne et Qualité du Vin (SVQV), INRAE, Université de Strasbourg, Colmar, France
| | - Marie-Annick Dorne
- Santé de la Vigne et Qualité du Vin (SVQV), INRAE, Université de Strasbourg, Colmar, France
| | - Marie-Céline Lacombe
- Santé de la Vigne et Qualité du Vin (SVQV), INRAE, Université de Strasbourg, Colmar, France
| | - Eric Duchêne
- Santé de la Vigne et Qualité du Vin (SVQV), INRAE, Université de Strasbourg, Colmar, France
| | - Didier Merdinoglu
- Santé de la Vigne et Qualité du Vin (SVQV), INRAE, Université de Strasbourg, Colmar, France
| | - Nemo Peeters
- Laboratoire des Interactions Plantes Micro-organismes Environnement (LIPME), INRAE, CNRS, Université de Toulouse, Chem. de Borde Rouge, Castanet-Tolosan, France
| | - David Rousseau
- Université d'Angers, LARIS, INRAE, IRHS, Angers, France.
| | | |
Collapse
|
5
|
De Rosso M, Panighel A, Migliaro D, Possamai T, De Marchi F, Velasco R, Flamini R. The pivotal role of high-resolution mass spectrometry in the study of grape glycosidic volatile precursors for the selection of grapevines resistant to mildews. JOURNAL OF MASS SPECTROMETRY : JMS 2023; 58:e4961. [PMID: 37461255 DOI: 10.1002/jms.4961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/26/2023] [Accepted: 06/18/2023] [Indexed: 10/21/2023]
Abstract
A breeding program to produce new grape varieties tolerant to main vine fungal pathogens (Plasmopara viticola and Erysiphe necator) is carrying out by crossing Vitis vinifera cv. "Glera" with resistant genotypes such as "Solaris," "Bronner," and "Kunleany." Firstly, resistance gene-based markers analyses allowed the identification of five genotypes, which have inherited the resistance loci against mildews. To select those that also inherited the phenotype as close as possible to 'Glera' suitable to be introduced in the Prosecco wine production protocols, the grape glycosidic derivatives were studied by UHPLC/QTOF mass spectrometry. Targeted identification of the metabolites was performed using a database expressly constructed by including the glycosidic volatile precursors previously identified in grape and wine. A total of 77 glycosidic derivatives including many aroma precursors and some variety markers, were identified. Original resistant genotypes had distinct metabolomic profiles and different to 'Glera', while the crossings showed varying similarity degrees to V. vinifera parent. Findings demonstrated the Glera × Bronner and Glera × Solaris crossings are more suitable to produce high-sustainable Prosecco wines. Coupling of glycosidic volatile precursors profiling to multivariate statistical analysis was effective for phenotypic characterization of grapes and to evaluate their enological potential.
Collapse
Affiliation(s)
- Mirko De Rosso
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Chemistry & Metabolomics Lab, Treviso, Italy
| | - Annarita Panighel
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Chemistry & Metabolomics Lab, Treviso, Italy
| | - Daniele Migliaro
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Chemistry & Metabolomics Lab, Treviso, Italy
| | - Tyrone Possamai
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Chemistry & Metabolomics Lab, Treviso, Italy
| | - Fabiola De Marchi
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Chemistry & Metabolomics Lab, Treviso, Italy
| | - Riccardo Velasco
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Chemistry & Metabolomics Lab, Treviso, Italy
| | - Riccardo Flamini
- Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology (CREA-VE), Chemistry & Metabolomics Lab, Treviso, Italy
| |
Collapse
|
6
|
Frommer B, Müllner S, Holtgräwe D, Viehöver P, Huettel B, Töpfer R, Weisshaar B, Zyprian E. Phased grapevine genome sequence of an Rpv12 carrier for biotechnological exploration of resistance to Plasmopara viticola. FRONTIERS IN PLANT SCIENCE 2023; 14:1180982. [PMID: 37223784 PMCID: PMC10200900 DOI: 10.3389/fpls.2023.1180982] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/11/2023] [Indexed: 05/25/2023]
Abstract
The downy mildew disease caused by the oomycete Plasmopara viticola is a serious threat for grapevine and can cause enormous yield losses in viticulture. The quantitative trait locus Rpv12, mediating resistance against P. viticola, was originally found in Asian Vitis amurensis. This locus and its genes were analyzed here in detail. A haplotype-separated genome sequence of the diploid Rpv12-carrier Gf.99-03 was created and annotated. The defense response against P. viticola was investigated in an infection time-course RNA-seq experiment, revealing approximately 600 upregulated Vitis genes during host-pathogen interaction. The Rpv12 regions of the resistance and the sensitivity encoding Gf.99-03 haplotype were structurally and functionally compared with each other. Two different clusters of resistance-related genes were identified within the Rpv12 locus. One cluster carries a set of four differentially expressed genes with three ACCELERATED CELL DEATH 6-like genes. The other cluster carries a set of six resistance gene analogs related to qualitative pathogen resistance. The Rpv12 locus and its candidate genes for P. viticola resistance provide a precious genetic resource for P. viticola resistance breeding. Newly developed co-segregating simple sequence repeat markers in close proximity to the R-genes enable its improved applicability in marker-assisted grapevine breeding.
Collapse
Affiliation(s)
- Bianca Frommer
- Genetics and Genomics of Plants, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- Computational Biology, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Sophia Müllner
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn-Institute, Siebeldingen, Germany
| | - Daniela Holtgräwe
- Genetics and Genomics of Plants, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Prisca Viehöver
- Genetics and Genomics of Plants, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Bruno Huettel
- Max Planck-Genome-Centre Cologne, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Reinhard Töpfer
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn-Institute, Siebeldingen, Germany
| | - Bernd Weisshaar
- Genetics and Genomics of Plants, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Eva Zyprian
- Institute for Grapevine Breeding Geilweilerhof, Julius Kühn-Institute, Siebeldingen, Germany
| |
Collapse
|
7
|
Ilnitskaya ET, Makarkina MV, Toкmakov SV, Naumova LG. DNA marker identification of downy mildew resistance locus Rpv10 in grapevine genotypes. Vavilovskii Zhurnal Genet Selektsii 2023; 27:129-134. [PMID: 37063517 PMCID: PMC10097596 DOI: 10.18699/vjgb-23-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 04/18/2023] Open
Abstract
One of the most common and harmful diseases of grapevine is downy mildew, caused by Plasmopara viticola. Cultivars of Vitis vinifera, the basis of high-quality viticulture, are mainly not resistant to downy mildew. Varieties with natural resistance to downy mildew belong to the vine species of North America and Asia (V. aestivalis, V. berlandieri, V. cinerea, V. labrusca, V. amurensis, etc.), as well as Muscadinia rotundifolia. The breeding of resistant cultivars is based on interspecific crossing. Currently, molecular genetic methods are increasingly used in pre-selection work and directly in breeding. One of the major loci of downy mildew resistance, Rpv10, was first identified in the variety Solaris and was originally inherited from wild V. amurensis. DNA markers that allow detecting Rpv10 in grapevine genotypes are known. We used PCR analysis to search for donors of resistance locus among 30 grape cultivars that, according to their pedigrees, could carry Rpv10. The work was performed using an automatic genetic analyzer, which allows obtaining high-precision data. Rpv10 locus allele, which determines resistance to the downy mildew pathogen, has been detected in 10 genotypes. Fingerprinting of grape cultivars with detected Rpv10 was performed at 6 reference SSR loci. DNA marker analysis revealed the presence of a resistance allele in the cultivar Korinka russkaya, which, according to publicly available data, is the offspring of the cultivar Zarya Severa and cannot carry Rpv10. Using the microsatellite loci polymorphism analysis and the data from VIVC database, it was found that Korinka russkaya is the progeny of the cultivar Severnyi, which is the donor of the resistance locus Rpv10. The pedigree of the grapevine cultivar Korinka russkaya was also clarified.
Collapse
Affiliation(s)
- E T Ilnitskaya
- North-Caucasian Federal Scientific Center of Horticulture, Viticulture, Winemaking, Krasnodar, Russia
| | - M V Makarkina
- North-Caucasian Federal Scientific Center of Horticulture, Viticulture, Winemaking, Krasnodar, Russia
| | - S V Toкmakov
- North-Caucasian Federal Scientific Center of Horticulture, Viticulture, Winemaking, Krasnodar, Russia
| | - L G Naumova
- Ya.I. Potapenko All-Russian Research Institute of Viticulture and Winemaking - branch of Federal Rostov Agricultural Research Center, Novocherkassk, Russia
| |
Collapse
|
8
|
Oerke EC, Juraschek L, Steiner U. Hyperspectral mapping of the response of grapevine cultivars to Plasmopara viticola infection at the tissue scale. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:377-395. [PMID: 36173350 DOI: 10.1093/jxb/erac390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Resistance of grapevine to Plasmopara viticola is associated with the hypersensitive reaction, accumulation of stilbenoids, and formation of callose depositions. Spectral characterization of infected leaf tissue of cvs 'Regent' and 'Solaris' with resistance genes Rpv 3-1 and Rpv 10 and Rpv 3-3, respectively, suggested that resistance is not dependent on large-scale necrotization of host tissue. Reactions of the resistant cultivars and a reference susceptible to P. viticola were studied using hyperspectral imaging (range 400-1000 nm) at the tissue level and microscopic techniques. Resistance of both cultivars was incomplete and allowed pathogen reproduction. Spectral vegetation indices characterized the host response to pathogen invasion; the vitality of infected and necrotic leaf tissue differed significantly. Resistance depended on local accumulation of polyphenols in response to haustorium formation and was more effective for cv. 'Solaris'. Although hypersensitive reaction of some cells prevented colonization of palisade parenchyma, resistance was not associated with extensive necrotization of tissue, and the biotrophic pathogen survived localized death of penetrated host cells. Hyperspectral imaging was suitable to characterize and differentiate the resistance reactions of grapevine cultivars by mapping of the cellular response to pathogen attack on the tissue level and yields useful information on host-pathogen interactions.
Collapse
Affiliation(s)
- Erich-Christian Oerke
- Rheinische Friedrich-Wilhelms-Universitaet Bonn, INRES - Plant Pathology, Nussallee 9, D-53115 Bonn, Germany
| | - Lena Juraschek
- Rheinische Friedrich-Wilhelms-Universitaet Bonn, INRES - Plant Pathology, Nussallee 9, D-53115 Bonn, Germany
| | - Ulrike Steiner
- Rheinische Friedrich-Wilhelms-Universitaet Bonn, INRES - Plant Pathology, Nussallee 9, D-53115 Bonn, Germany
| |
Collapse
|
9
|
Salotti I, Bove F, Ji T, Rossi V. Information on disease resistance patterns of grape varieties may improve disease management. FRONTIERS IN PLANT SCIENCE 2022; 13:1017658. [PMID: 36452091 PMCID: PMC9704053 DOI: 10.3389/fpls.2022.1017658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/17/2022] [Indexed: 06/17/2023]
Abstract
Resistance to downy mildew (DM) and powdery mildew (PM) contributes to sustainable vineyard management by reducing the diseases and the need for fungicide applications. Resistant varieties vary in their degree of resistance to DM and PM, and in their susceptibility to other diseases. As a consequence, fungicide use may differ among varieties depending on their "resistance patterns" (i.e., the resistance level of a variety toward all of the diseases in the vineyard). The resistance patterns of 16 grapevine varieties to DM, PM, black rot (BR), and gray mold (GM) were evaluated over a 4-year period under field conditions. Disease severity was assessed on leaves and bunches, and the AUDPC (Area Under Disease Progress Curve) was calculated to represent the epidemic progress. GM was found only on bunches and only at very low levels, irrespective of the year or variety, and was therefore excluded from further analyses. The varieties were then grouped into four resistance patterns: i) low resistance to DM and PM, intermediate resistance to BR; ii) high resistance to DM, intermediate resistance to PM, low resistance to BR; iii) intermediate resistance to DM and BR, low resistance to PM; and iv) high resistance to DM, PM, and BR. AUDPC values on leaves were positively correlated with AUDPC values on bunches for susceptible varieties but not for resistant ones, with the exception of PM. Therefore, bioassays with leaves can be used to predict the resistance of bunches to DM and BR for susceptible varieties but not for resistant ones. These results may facilitate both strategic and tactical decisions for the sustainable management of grapevine diseases.
Collapse
Affiliation(s)
- Irene Salotti
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | | | - Tao Ji
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vittorio Rossi
- Department of Sustainable Crop Production (DI.PRO.VES.), Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
10
|
Possamai T, Wiedemann-Merdinoglu S. Phenotyping for QTL identification: A case study of resistance to Plasmopara viticola and Erysiphe necator in grapevine. FRONTIERS IN PLANT SCIENCE 2022; 13:930954. [PMID: 36035702 PMCID: PMC9403010 DOI: 10.3389/fpls.2022.930954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 06/01/2023]
Abstract
Vitis vinifera is the most widely cultivated grapevine species. It is highly susceptible to Plasmopara viticola and Erysiphe necator, the causal agents of downy mildew (DM) and powdery mildew (PM), respectively. Current strategies to control DM and PM mainly rely on agrochemical applications that are potentially harmful to humans and the environment. Breeding for resistance to DM and PM in wine grape cultivars by introgressing resistance loci from wild Vitis spp. is a complementary and more sustainable solution to manage these two diseases. During the last two decades, 33 loci of resistance to P. viticola (Rpv) and 15 loci of resistance to E. necator (Ren and Run) have been identified. Phenotyping is salient for QTL characterization and understanding the genetic basis of resistant traits. However, phenotyping remains a major bottleneck for research on Rpv and Ren/Run loci and disease resistance evaluation. A thorough analysis of the literature on phenotyping methods used for DM and PM resistance evaluation highlighted phenotyping performed in the vineyard, greenhouse or laboratory with major sources of variation, such as environmental conditions, plant material (organ physiology and age), pathogen inoculum (genetic and origin), pathogen inoculation (natural or controlled), and disease assessment method (date, frequency, and method of scoring). All these factors affect resistance assessment and the quality of phenotyping data. We argue that the use of new technologies for disease symptom assessment, and the production and adoption of standardized experimental guidelines should enhance the accuracy and reliability of phenotyping data. This should contribute to a better replicability of resistance evaluation outputs, facilitate QTL identification, and contribute to streamline disease resistance breeding programs.
Collapse
Affiliation(s)
- Tyrone Possamai
- CREA—Research Centre for Viticulture and Enology, Conegliano, Italy
| | | |
Collapse
|
11
|
Marie Juraschek L, Matera C, Steiner U, Oerke EC. Pathogenesis of Plasmopara viticola Depending on Resistance Mediated by Rpv3_1, and Rpv10 and Rpv3_3, and by the Vitality of Leaf Tissue. PHYTOPATHOLOGY 2022; 112:1486-1499. [PMID: 35681263 DOI: 10.1094/phyto-10-21-0415-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Grapevine cultivars vary in their resistance to Plasmopara viticola, causal agent of downy mildew. Genes from various Vitis species confer pathogen resistance (Rpv), resulting in reduced compatibility of the host-pathogen interaction and partial disease resistance that may become apparent at different stages of pathogenesis. This study describes the pathogenesis of P. viticola on the partially resistant cultivars Regent (Rpv3-1) and Solaris (Rpv3-3, Rpv10) as compared with the susceptible cultivar Mueller-Thurgau using various microscopic techniques, visual disease rating as well as qPCR. Host plant resistance had no effect on the initial steps of pathogenesis outside the host plant cells (zoospore attachment, formation of substomatal vesicle) and became detectable only after the formation of primary haustoria. The restricted compatibility resulted in reductions in haustorium size and in the number of secondary haustoria and was associated with callose depositions around haustoria and stomatal guard cells, collapsed mesophyll cells (hypersensitive reaction), and additional production of an amorphous substance in the intercellular space of cultivar Solaris. Resistance mechanisms reduced the efficiency of P. viticola haustoria and largely restricted tissue colonization to the spongy parenchyma; resistance of cultivar Solaris having thicker leaves was more effective than that of cultivar Regent. Despite of the effects of resistance genes, P. viticola was able to complete its life cycle by forming sporangiophores with sporangia through the stomata on both resistant cultivars indicating partial resistance. Differences in the pathogenesis on detached and attached grapevine leaves highlighted the impact of host tissue vitality on both resistance and susceptibility to the biotrophic pathogen.
Collapse
Affiliation(s)
- Lena Marie Juraschek
- Institute of Crop Science and Resource Conservation-Plant Pathology, Rheinische Friedrich-Wilhelms-Universitaet Bonn, 53115 Bonn, Germany
| | - Christiane Matera
- Institute of Crop Science and Resource Conservation-Plant Pathology, Rheinische Friedrich-Wilhelms-Universitaet Bonn, 53115 Bonn, Germany
| | - Ulrike Steiner
- Institute of Crop Science and Resource Conservation-Plant Pathology, Rheinische Friedrich-Wilhelms-Universitaet Bonn, 53115 Bonn, Germany
| | - Erich-Christian Oerke
- Institute of Crop Science and Resource Conservation-Plant Pathology, Rheinische Friedrich-Wilhelms-Universitaet Bonn, 53115 Bonn, Germany
| |
Collapse
|
12
|
Koledenkova K, Esmaeel Q, Jacquard C, Nowak J, Clément C, Ait Barka E. Plasmopara viticola the Causal Agent of Downy Mildew of Grapevine: From Its Taxonomy to Disease Management. Front Microbiol 2022; 13:889472. [PMID: 35633680 PMCID: PMC9130769 DOI: 10.3389/fmicb.2022.889472] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/19/2022] [Indexed: 01/25/2023] Open
Abstract
Plasmopara viticola (P. viticola, Berk. & M. A. Curtis; Berl. & De Toni) causing grapevine downy mildew is one of the most damaging pathogens to viticulture worldwide. Since its recognition in the middle of nineteenth century, this disease has spread from America to Europe and then to all grapevine-growing countries, leading to significant economic losses due to the lack of efficient disease control. In 1885 copper was found to suppress many pathogens, and is still the most effective way to control downy mildews. During the twentieth century, contact and penetrating single-site fungicides have been developed for use against plant pathogens including downy mildews, but wide application has led to the appearance of pathogenic strains resistant to these treatments. Additionally, due to the negative environmental impact of chemical pesticides, the European Union restricted their use, triggering a rush to develop alternative tools such as resistant cultivars breeding, creation of new active ingredients, search for natural products and biocontrol agents that can be applied alone or in combination to kill the pathogen or mitigate its effect. This review summarizes data about the history, distribution, epidemiology, taxonomy, morphology, reproduction and infection mechanisms, symptoms, host-pathogen interactions, host resistance and control of the P. viticola, with a focus on sustainable methods, especially the use of biocontrol agents.
Collapse
Affiliation(s)
- Kseniia Koledenkova
- Université de Reims Champagne Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Qassim Esmaeel
- Université de Reims Champagne Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Cédric Jacquard
- Université de Reims Champagne Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Jerzy Nowak
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Saunders Hall, Blacksburg, VA, United States
| | - Christophe Clément
- Université de Reims Champagne Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - Essaid Ait Barka
- Université de Reims Champagne Ardenne, RIBP EA4707 USC INRAE 1488, SFR Condorcet FR CNRS 3417, Reims, France
| |
Collapse
|
13
|
Štambuk P, Šikuten I, Karoglan Kontić J, Maletić E, Preiner D, Tomaz I. Leaf Polyphenolic Profile as a Determinant of Croatian Native Grapevine Varieties' Susceptibility to Plasmopara viticola. FRONTIERS IN PLANT SCIENCE 2022; 13:836318. [PMID: 35360327 PMCID: PMC8963502 DOI: 10.3389/fpls.2022.836318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Since grapevine is highly susceptible to various pathogens, enormous amounts of pesticides are applied each season to achieve profitable production. One of the most destructive grapevine diseases is downy mildew, and their interaction has been in the spotlight for more than a decade. When it comes to a metabolome level, phenolic compounds are relevant to investigate due to their involvement in the plant immune system and known antifungal properties. Croatian grapevine germplasm is highly heterogeneous due to its long history of cultivation in diversified geographical regions. Since it has been found that native varieties react differently to the infection of Plasmopara viticola, the intention of this study is to define if the chemical background of the leaves, i.e., polyphenolic composition, is responsible for these dissimilarities. Therefore, the leaves of 17 genotypes, among which 14 were native and 3 were controls, were analyzed using high-performance liquid chromatography (HPLC) in four terms: before inoculation and 24, 48, and 96 h post inoculation (hpi). During this early phase, significant differences were found neither between the terms nor between the non-inoculated and inoculated samples, except for resveratrol-3-O-glucoside. By applying principal component analysis (PCA) using initial leaf polyphenolic composition, varieties of V. vinifera were clearly separated into three different groups corresponding to their International Organization of Vine and Wine (OIV) classes of susceptibility to P. viticola. Results obtained in this research suggest that the initial constitutive polyphenolic composition of the cultivar leaves has a crucial influence on their susceptibility to P. viticola, and this finding can be used to improve the success of grapevine breeding programs toward downy mildew resistance.
Collapse
Affiliation(s)
- Petra Štambuk
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Zagreb, Croatia
| | - Iva Šikuten
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Zagreb, Croatia
| | - Jasminka Karoglan Kontić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Zagreb, Croatia
| | - Edi Maletić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Zagreb, Croatia
| | - Darko Preiner
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Zagreb, Croatia
| | - Ivana Tomaz
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Zagreb, Croatia
| |
Collapse
|
14
|
Wingerter C, Eisenmann B, Kortekamp A, Bogs J. Resistance properties of new fungus-resistant grapevine cultivars against Plasmopara viticola and the impact of their deployment on fungicide use in viticulture. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225002006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
15
|
Salotti I, Bove F, Rossi V. Field evaluation of grapevines resistant to downy and powdery mildews. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225002003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
16
|
Wingerter C, Eisenmann B, Weber P, Dry I, Bogs J. Grapevine Rpv3-, Rpv10- and Rpv12-mediated defense responses against Plasmopara viticola and the impact of their deployment on fungicide use in viticulture. BMC PLANT BIOLOGY 2021; 21:470. [PMID: 34649524 PMCID: PMC8515710 DOI: 10.1186/s12870-021-03228-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/23/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND The high susceptibility of European grapevine cultivars (Vitis vinifera) to downy mildew (Plasmopara viticola) leads to the intensive use of fungicides in viticulture. To reduce this input, breeding programs have introgressed resistance loci from wild Vitis species into V. vinifera, resulting in new fungus-resistant grapevine cultivars (FRC). However, little is known about how these different resistance loci confer resistance and what the potential reduction in fungicide applications are likely to be if these FRCs are deployed. To ensure a durable and sustainable resistance management and breeding, detailed knowledge about the different defense mechanisms mediated by the respective Rpv (Resistance to P. viticola) resistance loci is essential. RESULTS A comparison of the resistance mechanisms mediated by the Rpv3-1, Rpv10 and/or Rpv12-loci revealed an early onset of programmed cell death (PCD) at 8 hours post infection (hpi) in Rpv12-cultivars and 12 hpi in Rpv10-cultivars, whereas cell death was delayed in Rpv3-cultivars and was not observed until 28 hpi. These temporal differences correlated with an increase in the trans-resveratrol level and the formation of hydrogen peroxide shortly before onset of PCD. The differences in timing of onset of Rpv-loci specific defense reactions following downy mildew infection could be responsible for the observed differences in hyphal growth, sporulation and cultivar-specific susceptibility to this pathogen in the vineyard. Hereby, Rpv3- and Rpv12/Rpv3-cultivars showed a potential for a significant reduction of fungicide applications, depending on the annual P. viticola infection pressure and the Rpv-loci. Furthermore, we report on the discovery of a new P. viticola isolate that is able to overcome both Rpv3- and Rpv12-mediated resistance. CONCLUSION This study reveals that differences in the timing of the defense reaction mediated by the Rpv3-, Rpv10- and Rpv12-loci, result in different degrees of natural resistance to downy mildew in field. Vineyard trials demonstrate that Rpv12/Rpv3- and Rpv3-cultivars are a powerful tool to reduce the dependence of grape production on fungicide applications. Furthermore, this study indicates the importance of sustainable breeding and plant protection strategies based on resistant grapevine cultivars to reduce the risk of new P. viticola isolates that are able to overcome the respective resistance mechanism.
Collapse
Affiliation(s)
- Chantal Wingerter
- State Education and Research Center of Viticulture, Horticulture and Rural Development, Neustadt/Weinstr, Germany
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Birgit Eisenmann
- State Education and Research Center of Viticulture, Horticulture and Rural Development, Neustadt/Weinstr, Germany
| | - Patricia Weber
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Ian Dry
- CSIRO Agriculture & Food, Urrbrae, SA 5064 Australia
| | - Jochen Bogs
- State Education and Research Center of Viticulture, Horticulture and Rural Development, Neustadt/Weinstr, Germany
- Technische Hochschule Bingen, 55411 Bingen am Rhein, Germany
| |
Collapse
|
17
|
Ciubotaru RM, Franceschi P, Zulini L, Stefanini M, Škrab D, Rossarolla MD, Robatscher P, Oberhuber M, Vrhovsek U, Chitarrini G. Mono-Locus and Pyramided Resistant Grapevine Cultivars Reveal Early Putative Biomarkers Upon Artificial Inoculation With Plasmopara viticola. FRONTIERS IN PLANT SCIENCE 2021; 12:693887. [PMID: 34276743 PMCID: PMC8281963 DOI: 10.3389/fpls.2021.693887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/04/2021] [Indexed: 06/02/2023]
Abstract
One of the most economically important grapevine diseases is Downy mildew (DM) caused by the oomycete Plasmopara viticola. A strategy to reduce the use of fungicides to compensate for the high susceptibility of V. vinifera is the selection of grapevine varieties showing pathogen-specific resistance. We applied a metabolomics approach to evaluate the metabolic modulation in mono-locus resistant genotypes carrying one locus associated with P. viticola resistance (Rpv) (BC4- Rpv1, Bianca- Rpv3-1, F12P160- Rpv12, Solaris- Rpv10), as well as in pyramided resistant genotypes carrying more than one Rpv (F12P60- Rpv3-1; Rpv12 and F12P127- Rpv3-1, Rpv3-3; Rpv10) taking as a reference the susceptible genotype Pinot Noir. In order to understand if different sources of resistance are associated with different degrees of resistance and, implicitly, with different responses to the pathogen, we considered the most important classes of plant metabolite primary compounds, lipids, phenols and volatile organic compounds at 0, 12, 48, and 96 h post-artificial inoculation (hpi). We identified 264 modulated compounds; among these, 22 metabolites were found accumulated in significant quantities in the resistant cultivars compared to Pinot Noir. In mono-locus genotypes, the highest modulation of the metabolites was noticed at 48 and 96 hpi, except for Solaris, that showed a behavior similar to the pyramided genotypes in which the changes started to occur as early as 12 hpi. Bianca, Solaris and F12P60 showed the highest number of interesting compounds accumulated after the artificial infection and with a putative effect against the pathogen. In contrast, Pinot Noir showed a less effective defense response in containing DM growth.
Collapse
Affiliation(s)
- Ramona Mihaela Ciubotaru
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Pietro Franceschi
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Luca Zulini
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Marco Stefanini
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Domen Škrab
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | | | | | - Urska Vrhovsek
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Giulia Chitarrini
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Laimburg Research Centre, Auer, Italy
| |
Collapse
|
18
|
Ruiz-García L, Gago P, Martínez-Mora C, Santiago JL, Fernádez-López DJ, Martínez MDC, Boso S. Evaluation and Pre-selection of New Grapevine Genotypes Resistant to Downy and Powdery Mildew, Obtained by Cross-Breeding Programs in Spain. FRONTIERS IN PLANT SCIENCE 2021; 12:674510. [PMID: 34956246 PMCID: PMC8703198 DOI: 10.3389/fpls.2021.674510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 11/22/2021] [Indexed: 05/08/2023]
Abstract
The need to develop an environmentally friendly, sustainable viticulture model has led to numerous grapevine improvement programmes aiming to increase resistance to downy and powdery mildew. The success of such programmes relies on the availability of protocols that can quantify the resistance/susceptibility of new genotypes, and on the existence of molecular markers of resistance loci that can aid in the selection process. The present work assesses the degree of phenotypic resistance/susceptibility to downy and powdery mildew of 28 new genotypes obtained from crosses between "Monastrell" and "Regent." Three genotypes showed strong combined resistance, making them good candidates for future crosses with other sources of resistance to these diseases (pyramiding). In general, laboratory and glasshouse assessments of resistance at the phenotype level agreed with the resistance expected from the presence of resistance-associated alleles of simple sequence repeat (SSR) markers for the loci Rpv3 and Ren3 (inherited from "Regent"), confirming their usefulness as indicators of likely resistance to downy and powdery mildew, respectively, particularly so for downy mildew.
Collapse
Affiliation(s)
- Leonor Ruiz-García
- Department of Biotechnology, Genomics and Plant Breeding, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Murcia, Spain
| | - Pilar Gago
- Department of Viticulture and Forestry, Misión Biológica de Galicia (Consejo Superior de Investigaciones Científicas, CSIC), Salcedo, Spain
| | - Celia Martínez-Mora
- Department of Biotechnology, Genomics and Plant Breeding, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Murcia, Spain
| | - José Luis Santiago
- Department of Viticulture and Forestry, Misión Biológica de Galicia (Consejo Superior de Investigaciones Científicas, CSIC), Salcedo, Spain
| | - Diego J. Fernádez-López
- Department of Biotechnology, Genomics and Plant Breeding, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario, Murcia, Spain
| | - María del Carmen Martínez
- Department of Viticulture and Forestry, Misión Biológica de Galicia (Consejo Superior de Investigaciones Científicas, CSIC), Salcedo, Spain
| | - Susana Boso
- Department of Viticulture and Forestry, Misión Biológica de Galicia (Consejo Superior de Investigaciones Científicas, CSIC), Salcedo, Spain
- *Correspondence: Susana Boso,
| |
Collapse
|
19
|
Ilnitskaya E, Makarkina M, Tokmakov S, Kotlyar V. DNA-marker identification of Rpv3 and Rpv12 resistance loci in genotypes of table and seedless grape varieties. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202503004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA markers are widely used in grapevine breeding to create forms with combined resistance genes. Downy mildew is one of the most common fungal diseases of the vine in the world. Growing grapevines with increased resistance allows to reduce the number of chemical treatments. The decrease in the use of pesticides is especially significant for viticulture of table varieties, since berries are directly consumed by humans for food. Currently, more than 20 resistance genes have been identified by molecular methods, and DNA markers for many genes have been developed. The genes Rpv3 (inherited from North American grape species) and Rpv12 (derived from V. amurensis) are among the most effective and have an additive effect. The study of 14 table grape varieties for the presence of the Rpv3 gene and 8 varieties for the presence of the Rpv12 gene was performed by using DNA-marker analysis. The analysis included varieties that could inherit these genes from the parent forms, according to their ancestry. The study was conducted using an automatic genetic analyzer ABI Prism 3130 and special software GeneMapper and PeakScanner, DNA-markers were taken from literature sources. According to the results of DNA-marker analysis, 9 varieties were identified, including 2 seedless varieties, with the Rpv3299-279 allele in the genotypes, which determines resistance to downy mildew, and 3 table varieties with the Rpv12 gene in the genotypes. One table grape genotype was identified with Rpv3 and Rpv12.
Collapse
|