1
|
Zhou QY, Li W, He SX, Deng SG, Xiao SF, Liu CJ, Ma LQ. Selenium alleviates chromium stress and promotes chromium uptake in As-hyperaccumulator Pteris vittata: Cr reduction and cellar distribution. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135322. [PMID: 39079291 DOI: 10.1016/j.jhazmat.2024.135322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Arsenic-hyperaccumulator Pteris vittata exhibits remarkable absorption ability for chromium (Cr) while beneficial element selenium (Se) helps to reduce Cr-induced stress in plants. However, the effects of Se on the Cr uptake and the associated mechanisms in P. vittata are unclear, which were investigated in this study. P. vittata plants were grown for 14 days in 0.2-strength Hoagland solution containing 10 (Cr10) or 100 μM (Cr100) chromate (CrVI) and 1 μM selenate (Se1). The plant biomass, malondialdehyde contents, total Cr and Se contents, Cr speciation, expression of genes associated with Cr uptake, and Cr subcellular distribution in P. vittata were determined. P. vittata effectively accumulated Cr by concentrating 96-99% in the roots under Cr100 treatment. Further, Se substantially increased its Cr contents by 98% to 11,596 mg kg-1 in the roots, which may result from Se's role in reducing its oxidative stress as supported by 27-62% reduction in the malondialdehyde contents. Though supplied with CrVI, up to 98% of the Cr in the roots was reduced to insoluble chromite (CrIII), with 83-89% being distributed on root cell walls. Neither Cr nor Se upregulated the expression of sulfate transporters PvSultr1;1-1;2 or phosphate transporter PvPht1;4, indicating their limited role in Cr uptake. P. vittata effectively accumulates Cr in the roots mainly as CrIII on cell walls and Se effectively enhances its Cr uptake by reducing its oxidative stress. Our study suggests that Se can be used to enhance P. vittata Cr uptake and reduce its oxidative stress, which may have application in phytostabilization of Cr-contaminated soils.
Collapse
Affiliation(s)
- Qian-Yu Zhou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wei Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Si-Xue He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Song-Ge Deng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shu-Fen Xiao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Chen-Jing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Liu Z, Lu Q, Zhao Y, Wei J, Liu M, Duan X, Lin M. Ameliorating Effects of Graphene Oxide on Cadmium Accumulation and Eco-Physiological Characteristics in a Greening Hyperaccumulator ( Lonicera japonica Thunb.). PLANTS (BASEL, SWITZERLAND) 2023; 13:19. [PMID: 38202327 PMCID: PMC10780341 DOI: 10.3390/plants13010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024]
Abstract
Graphene oxide (GO), as a novel carbon-based nanomaterial (CBN), has been widely applied to every respect of social life due to its unique composite properties. The widespread use of GO inevitably promotes its interaction with heavy metal cadmium (Cd), and influences its functional behavior. However, little information is available on the effects of GO on greening hyperaccumulators under co-occurring Cd. In this study, we chose a typical greening hyperaccumulator (Lonicera japonica Thunb.) to show the effect of GO on Cd accumulation, growth, net photosynthesis rate (Pn), carbon sequestration and oxygen release functions of the plant under Cd stress. The different GO-Cd treatments were set up by (0, 10, 50 and 100 mg L-1) GO and (0, 5 and 25 mg L-1) Cd in solution culture. The maximum rate of Cd accumulation in the roots and shoots of the plant were increased by 10 mg L-1 GO (exposed to 5 mg L-1 Cd), indicating that low-concentration GO (10 mg L-1) combined with low-concentration Cd (5 mg L-1) might stimulate the absorption of Cd by L. japonica. Under GO treatments without Cd, the dry weight of root and shoot biomass, Pn value, carbon sequestration per unit leaf area and oxygen release per unit leaf area all increased in various degrees, especially under 10 mg L-1 GO, were 20.67%, 12.04%, 35% and 28.73% higher than the control. Under GO-Cd treatments, it is observed that the cooperation of low-concentration GO (10 mg L-1) and low-concentration Cd (5 mg L-1) could significantly stimulate Cd accumulation, growth, photosynthesis, carbon sequestration and oxygen release functions of the plant. These results indicated that suitable concentrations of GO could significantly alleviate the effects of Cd on L. japonica, which is helpful for expanding the phytoremediation application of greening hyperaccumulators faced with coexistence with environment of nanomaterials and heavy metals.
Collapse
Affiliation(s)
- Zhouli Liu
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China; (Q.L.); (J.W.); (X.D.)
- Institute of Carbon Neutrality Technology and Policy, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China
| | - Qingxuan Lu
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China; (Q.L.); (J.W.); (X.D.)
- Institute of Carbon Neutrality Technology and Policy, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China
| | - Yi Zhao
- School of Chemistry and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China
| | - Jianbing Wei
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China; (Q.L.); (J.W.); (X.D.)
- Institute of Carbon Neutrality Technology and Policy, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China
| | - Miao Liu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;
| | - Xiangbo Duan
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China; (Q.L.); (J.W.); (X.D.)
- Institute of Carbon Neutrality Technology and Policy, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
- Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110000, China
| | - Maosen Lin
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110161, China
| |
Collapse
|
3
|
Liu Z, An J, Lu Q, Yang C, Mu Y, Wei J, Hou Y, Meng X, Zhao Z, Lin M. Effects of Cadmium Stress on Carbon Sequestration and Oxygen Release Characteristics in A Landscaping Hyperaccumulator- Lonicera japonica Thunb. PLANTS (BASEL, SWITZERLAND) 2023; 12:2689. [PMID: 37514303 PMCID: PMC10385468 DOI: 10.3390/plants12142689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The carbon sequestration and oxygen release of landscape plants are dominant ecological service functions, which can play an important role in reducing greenhouse gases, improving the urban heat island effect and achieving carbon peaking and carbon neutrality. In the present study, we are choosing Lonicera japonica Thunb. as a model plant to show the effects of Cd stress on growth, photosynthesis, carbon sequestration and oxygen release characteristics. Under 5 mg kg-1 of Cd treatment, the dry weight of roots and shoots biomass and the net photosynthetic rate (PN) in L. japonica had a significant increase, and with the increase in Cd treatment concentration, the dry weight of roots and shoots biomass and PN in the plant began to decrease. When the Cd treatment concentration was up to 125 mg kg-1, the dry weight of root and shoots biomass and PN in the plant decreased by 5.29%, 1.94% and 2.06%, and they had no significant decrease compared with the control, indicating that the plant still had a good ability for growth and photoenergy utilization even under high concentrations of Cd stress. The carbon sequestration and oxygen release functions in terms of diurnal assimilation amounts (P), carbon sequestration per unit leaf area (WCO2), oxygen release per unit leaf area (WO2), carbon sequestration per unit land area (PCO2) and oxygen release per unit land area (PO2) in L. japonica had a similar change trend with the photosynthesis responses under different concentrations of Cd treatments, which indicated that L. japonica as a landscaping Cd-hyperaccumulator, has a good ability for carbon sequestration and oxygen release even under high concentrations of Cd stress. The present study will provide a useful guideline for effectively developing the ecological service functions of landscaping hyperaccumulators under urban Cd-contaminated environment.
Collapse
Affiliation(s)
- Zhouli Liu
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Jing An
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Qingxuan Lu
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Chuanjia Yang
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Yitao Mu
- College of Municipal and Environmental Engineering, Shenyang Urban Construction University, Shenyang 110167, China
| | - Jianbing Wei
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Yongxia Hou
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Xiangyu Meng
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Zhuo Zhao
- College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S & T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Maosen Lin
- College of Water Conservancy, Shenyang Agricultural University, Shenyang 110161, China
| |
Collapse
|
4
|
Liu Z, Tian L, Chen M, Zhang L, Lu Q, Wei J, Duan X. Hormesis Responses of Growth and Photosynthetic Characteristics in Lonicera japonica Thunb. to Cadmium Stress: Whether Electric Field Can Improve or Not? PLANTS (BASEL, SWITZERLAND) 2023; 12:933. [PMID: 36840281 PMCID: PMC9960363 DOI: 10.3390/plants12040933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
"Hormesis" is considered a dose-response phenomenon mainly observed at hyperaccumulator plants under heavy metals stress. In this study, the effects of electric fields on hormesis responses in Lonicera japonica Thunb. under cadmium (Cd) treatments were investigated by assessing the plant growth and photosynthetic characteristics. Under Cd treatments without electric fields, the parameters of plant growth and photosynthetic characteristics increased significantly when exposed to 5 mg L-1 Cd, and decreased slightly when exposed to 25 mg L-1 Cd, showing an inverted U-shaped trend, which confirmed that low concentration Cd has a hormesis effect on L. japonica. Under electric fields, different voltages significantly promoted the inverted U-shaped trend of the hormesis effect on the plant, especially by 2 V cm-1 voltage. Under 2 V cm-1 voltage, the dry weight of the root and leaf biomass exposed to 5 mg L-1 Cd increased significantly by 38.38% and 42.14%, and the photosynthetic pigment contents and photosynthetic parameters were also increased significantly relative to the control, indicating that a suitable electric field provides better improvements for the hormesis responses of the plant under Cd treatments. The synergistic benefits of the 5 mg L-1 Cd and 2 V cm-1 electric field in terms of the enhanced hormesis responses of growth and photosynthetic characteristics could contribute to the promoted application of electro-phytotechnology.
Collapse
Affiliation(s)
- Zhouli Liu
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Mengdi Chen
- Academy of Forest and Grassland Inventory and Planning of National Forestry and Grassland Administration, Beijing 100714, China
| | - Luhua Zhang
- State Owned Ying’emen Forest Farm of Qingyuan Manchu Autonomous County, Fushun 113306, China
| | - Qingxuan Lu
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Jianbing Wei
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
| | - Xiangbo Duan
- Liaoning Key Laboratory of Urban Integrated Pest Management and Ecological Security, College of Life Science and Engineering, Shenyang University, Shenyang 110044, China
- Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang 110000, China
| |
Collapse
|
5
|
Electric Field-Enhanced Cadmium Accumulation and Photosynthesis in a Woody Ornamental Hyperaccumulator—Lonicera japonica Thunb. PLANTS 2022; 11:plants11081040. [PMID: 35448768 PMCID: PMC9030930 DOI: 10.3390/plants11081040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022]
Abstract
The multi-system of electro-phytotechnology using a woody ornamental cadmium (Cd) hyperaccumulator (Lonicera japonica Thunb.) is a new departure for environmental remediation. The effects of four electric field conditions on Cd accumulation, growth, and photosynthesis of L. japonica under four Cd treatments were investigated. Under 25 and 50 mg L−1 Cd treatments, Cd accumulation in L. japonica was enhanced significantly compared to the control and reached 1110.79 mg kg−1 in root and 428.67 mg kg−1 in shoots influenced by the electric field, especially at 2 V cm−1, and with higher bioaccumulation coefficient (BC), translocation factor (TF), removal efficiency (RE), and the maximum Cd uptake, indicating that 2 V cm−1 voltage may be the most suitable electric field for consolidating Cd-hyperaccumulator ability. It is accompanied by increased root and shoots biomass and photosynthetic parameters through the electric field effect. These results show that a suitable electric field may improve the growth, hyperaccumulation, and photosynthetic ability of L.japonica. Meanwhile, low Cd supply (5 mg L−1) and medium voltage (2 V cm−1) improved plant growth and photosynthetic capacity, conducive to the practical application to a plant facing low concentration Cd contamination in the real environment.
Collapse
|
6
|
Zhang ZW, Deng ZL, Tao Q, Peng HQ, Wu F, Fu YF, Yang XY, Xu PZ, Li Y, Wang CQ, Chen YE, Yuan M, Lan T, Tang XY, Chen GD, Zeng J, Yuan S. Salicylate and glutamate mediate different Cd accumulation and tolerance between Brassica napus and B. juncea. CHEMOSPHERE 2022; 292:133466. [PMID: 34973246 DOI: 10.1016/j.chemosphere.2021.133466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Most hyperaccumulator plants have little economic values, and therefore have not been widely used in Cd-contaminated soils. Rape species are Cd hyperaccumulators with high economic values. Black mustard seed (Brassica juncea) has a higher accumulation ability and a higher tolerance for Cd than oilseed rape (Brassica napus), but its biomass is relatively low and its geographical distribution is limited. However, it is unknown why B. juncea (Bj) is more tolerant to and accumulates more Cd than B. napus (Bn). Here, we found that the differences in Cd accumulation and tolerance between the two species is mainly because Bj plants have higher levels of salicylic acid and glutamic acid than Bn plants. Exogenous salicylate and glutamate treatments enhanced Cd accumulation (salicylate + glutamate co-treatment doubled Cd accumulation level in Bn seedlings) but reduced oxidative stresses by increasing glutathione biosynthesis and activating phytochelatin-based sequestration of Cd into vacuoles. Our results provide a new idea to simultaneously improve Cd accumulation and Cd tolerance in B. napus.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zong-Lin Deng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hong-Qian Peng
- Agriculture and Rural Affairs Committee of Shapingba District, Chongqing, 400030, China
| | - Fan Wu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, 610015, China
| | - Yu-Fan Fu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin-Yue Yang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pei-Zhou Xu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yun Li
- Rape Research Institute, Chengdu Academy of Agriculture and Forestry, Chengdu, Sichuan, 611130, China
| | - Chang-Quan Wang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiao-Yan Tang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guang-Deng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
7
|
Yang XY, Zhang ZW, Fu YF, Feng LY, Li MX, Kang Q, Wang CQ, Yuan M, Chen YE, Tao Q, Lan T, Tang XY, Chen GD, Zeng J, Yuan S. Shade Avoidance 3 Mediates Crosstalk Between Shade and Nitrogen in Arabidopsis Leaf Development. FRONTIERS IN PLANT SCIENCE 2022; 12:800913. [PMID: 35095972 PMCID: PMC8792756 DOI: 10.3389/fpls.2021.800913] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
After nitrogen treatments, plant leaves become narrower and thicker, and the chlorophyll content increases. However, the molecular mechanisms behind these regulations remain unknown. Here, we found that the changes in leaf width and thickness were largely compromised in the shade avoidance 3 (sav3) mutant. The SAV3 gene encodes an amino-transferase in the auxin biosynthesis pathway. Thus, the crosstalk between shade and nitrogen in Arabidopsis leaf development was investigated. Both hypocotyl elongation and leaf expansion promoted by the shade treatment were reduced by the high-N treatment; high-N-induced leaf narrowing and thickening were reduced by the shade treatment; and all of these developmental changes were largely compromised in the sav3 mutant. Shade treatment promoted SAV3 expression, while high-N treatment repressed SAV3 expression, which then increased or decreased auxin accumulation in cotyledons/leaves, respectively. SAV3 also regulates chlorophyll accumulation and nitrogen assimilation and thus may function as a master switch responsive to multiple environmental stimuli.
Collapse
Affiliation(s)
- Xin-Yue Yang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yu-Fan Fu
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ling-Yang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | | | - Qi Kang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Chang-Quan Wang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, Ya’an, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Ting Lan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Yan Tang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Guang-Deng Chen
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
8
|
Sehar Z, Iqbal N, Fatma M, Rather BA, Albaqami M, Khan NA. Ethylene Suppresses Abscisic Acid, Modulates Antioxidant System to Counteract Arsenic-Inhibited Photosynthetic Performance in the Presence of Selenium in Mustard. FRONTIERS IN PLANT SCIENCE 2022; 13:852704. [PMID: 35651777 PMCID: PMC9149584 DOI: 10.3389/fpls.2022.852704] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/19/2022] [Indexed: 05/10/2023]
Abstract
Arsenic (As) stress provokes various toxic effects in plants that disturbs its photosynthetic potential and hampers growth. Ethylene and selenium (Se) have shown regulatory interaction in plants for metal tolerance; however, their synergism in As tolerance through modification of the antioxidant enzymes and hormone biosynthesis needs further elaboration. With this in view, we investigated the impact of ethylene and Se in the protection of photosynthetic performance against As stress in mustard (Brassica juncea L.). Supplementation with ethephon (2-chloroethylphosphonic acid; ethylene source) and/or Se allayed the negative impact of As-induced toxicity by limiting As content in leaves, enhancing the antioxidant defense system, and decreasing the accumulation of abscisic acid (ABA). Ethylene plus Se more prominently regulated stomatal behavior, improved photosynthetic capacity, and mitigated As-induced effects. Ethephon in the presence of Se decreased stress ethylene formation and ABA accumulation under As stress, resulting in improved photosynthesis and growth through enhanced reduced glutathione (GSH) synthesis, which in turn reduced the oxidative stress. In both As-stressed and non-stressed plants treated with ethylene action inhibitor, norbornadiene, resulted in increased ABA and oxidative stress with reduced photosynthetic activity by downregulating expression of ascorbate peroxidase and glutathione reductase, suggesting the involvement of ethylene in the reversal of As-induced toxicity. These findings suggest that ethephon and Se induce regulatory interaction between ethylene, ABA accumulation, and GSH metabolism through regulating the activity and expression of antioxidant enzymes. Thus, in an economically important crop (mustard), the severity of As stress could be reduced through the supplementation of both ethylene and Se that coordinate for maximum stress alleviation.
Collapse
Affiliation(s)
- Zebus Sehar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | | | - Mehar Fatma
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Bilal A. Rather
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
- *Correspondence: Mohammed Albaqami
| | - Nafees A. Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, India
- Nafees A. Khan
| |
Collapse
|
9
|
Feng R, Zhao P, Zhu Y, Yang J, Wei X, Yang L, Liu H, Rensing C, Ding Y. Application of inorganic selenium to reduce accumulation and toxicity of heavy metals (metalloids) in plants: The main mechanisms, concerns, and risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144776. [PMID: 33545486 DOI: 10.1016/j.scitotenv.2020.144776] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Anthropogenic activities such as mining, industrialization and subsequent emission of industrial waste, and agricultural practices have led to an increase in the accumulation of metal(loid)s in agricultural soils and crops, which threatens the health of people; the risk is more pronounced for individuals whose survival depends on food sources from several contaminated regions. Selenium (Se) is an element essential for the normal functioning of the human body and is a beneficial element for plants. Se deficiency in the diet is a common issue in many countries around the world, such as China and Egypt. >40 diseases are associated with Se deficiency. In practice, Se compounds have been applied through foliar sprays or via base application of fertilizers to increase Se concentration in the edible parts of crops and to satisfy the daily Se intake. Moreover, Se at low concentrations has been used to mitigate the toxicity of many metal(loid)s. In this review, we present an overview of the latest knowledge and practices with regards to the utilization of Se to reduce the uptake/toxicity of metal(loid)s in plants. We have focused on the following issues: 1) the current status of understanding the mechanisms of detoxification and uptake restriction of metal(loid)s regulated by Se; 2) the optimal dose and speciation of Se, and stage of plant growth that is optimal for application; 3) the differences in the efficiency of different application methods of Se including seed priming, base application, and foliar spray of Se fertilizers; 4) the possibility of using Se along with other methods to reduce multiple metal(loid) accumulation in crops; and 5) potential risks when Se is used to reduce metal(loid) accumulation in crops.
Collapse
Affiliation(s)
- RenWei Feng
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China.
| | - PingPing Zhao
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - YanMing Zhu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - JiGang Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - XinQi Wei
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Li Yang
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Hong Liu
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou 350002, China
| | - YongZhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
10
|
Jung HI, Lee TG, Lee J, Chae MJ, Lee EJ, Kim MS, Jung GB, Emmanuel A, Jeon S, Lee BR. Foliar-Applied Glutathione Mitigates Cadmium-Induced Oxidative Stress by Modulating Antioxidant-Scavenging, Redox-Regulating, and Hormone-Balancing Systems in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:700413. [PMID: 34589095 PMCID: PMC8473890 DOI: 10.3389/fpls.2021.700413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/18/2021] [Indexed: 05/16/2023]
Abstract
The antioxidant glutathione (GSH) mitigates adverse physio-metabolic effects and defends against abiotic types of stress, such as cadmium (Cd) stress. However, its function and role in resisting Cd phytotoxicity by leveraging plant antioxidant-scavenging, redox-regulating, and hormone-balancing systems have not been comprehensively and systematically demonstrated in the Cd-hyperaccumulating plant Brassica napus L. cv. Tammi (oilseed rape). In this study, the effects of exogenously applied GSH to the leaves of B. napus seedlings exposed to Cd (10 μM) were investigated. As a result, Cd stress alone significantly inhibited growth and increased the levels of reactive oxygen species (ROS) and the bioaccumulation of Cd in the seedlings compared with those in unstressed controls. Furthermore, Cd stress induced an imbalance in plant stress hormone levels and decreases in endogenous GSH levels and GSH redox ratios, which were correlated with reductions in ascorbate (AsA) and/or nicotinamide adenine dinucleotide phosphate (NADPH) redox states. However, the exogenous application of GSH to Cd-stressed B. napus seedlings reduced Cd-induced ROS levels and enhanced antioxidant-scavenging defenses and redox regulation by both increasing seedling AsA, GSH, and NADPH concentrations and rebalancing stress hormones, thereby enhancing Cd uptake and accumulation. These results demonstrate that GSH improved plant redox status by upregulating the AsA-GSH-NADPH cycle and reestablishing normal hormonal balance. This indicates that exogenously applied GSH can mitigate Cd phytotoxicity in B. napus and possibly other plants. Therefore, GSH can potentially be applied to Cd-polluted soil for plant remediation.
Collapse
Affiliation(s)
- Ha-il Jung
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Tae-Gu Lee
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Jinwook Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Mi-Jin Chae
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon, South Korea
| | - Eun-Jin Lee
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Myung-Sook Kim
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Goo-Bok Jung
- Division of Climate Change and Agroecology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
| | - Amoakwah Emmanuel
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
- Council for Scientific and Industrial Research-Soil Research Institute, Academy Post Office, Kwadaso, Ghana
| | - Sangho Jeon
- Division of Soil and Fertilizer, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, South Korea
- *Correspondence: Sangho Jeon
| | - Bok-Rye Lee
- Asian Pear Research Institute, Chonnam National University, Gwangju, South Korea
- Bok-Rye Lee
| |
Collapse
|