1
|
Edwards RL, Takach JE, McAndrew MJ, Menteer J, Lestz RM, Whitman D, Baxter-Lowe LA. Next generation multiplexing for digital PCR using a novel melt-based hairpin probe design. Front Genet 2023; 14:1272964. [PMID: 38028620 PMCID: PMC10667681 DOI: 10.3389/fgene.2023.1272964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Digital PCR (dPCR) is a powerful tool for research and diagnostic applications that require absolute quantification of target molecules or detection of rare events, but the number of nucleic acid targets that can be distinguished within an assay has limited its usefulness. For most dPCR systems, one target is detected per optical channel and the total number of targets is limited by the number of optical channels on the platform. Higher-order multiplexing has the potential to dramatically increase the usefulness of dPCR, especially in scenarios with limited sample. Other potential benefits of multiplexing include lower cost, additional information generated by more probes, and higher throughput. To address this unmet need, we developed a novel melt-based hairpin probe design to provide a robust option for multiplexing digital PCR. A prototype multiplex digital PCR (mdPCR) assay using three melt-based hairpin probes per optical channel in a 16-well microfluidic digital PCR platform accurately distinguished and quantified 12 nucleic acid targets per well. For samples with 10,000 human genome equivalents, the probe-specific ranges for limit of blank were 0.00%-0.13%, and those for analytical limit of detection were 0.00%-0.20%. Inter-laboratory reproducibility was excellent (r 2 = 0.997). Importantly, this novel melt-based hairpin probe design has potential to achieve multiplexing beyond the 12 targets/well of this prototype assay. This easy-to-use mdPCR technology with excellent performance characteristics has the potential to revolutionize the use of digital PCR in research and diagnostic settings.
Collapse
Affiliation(s)
- Rebecca L. Edwards
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | | | | | - Jondavid Menteer
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Cardiology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Rachel M. Lestz
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Nephrology, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Douglas Whitman
- Luminex Corporation, A Diasorin Company, Austin, TX, United States
| | - Lee Ann Baxter-Lowe
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, United States
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
2
|
Wang L, Liu L, Zhao J, Li C, Wu H, Zhao H, Wu Q. Granule-bound starch synthase in plants: Towards an understanding of their evolution, regulatory mechanisms, applications, and perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111843. [PMID: 37648115 DOI: 10.1016/j.plantsci.2023.111843] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Amylose content (AC) is a significant quality trait in starchy crops, affecting their processing and application by the food and non-food industries. Therefore, fine-tuning AC in these crops has become a focus for breeders. Granule-bound starch synthase (GBSS) is the core enzyme that directly determines the AC levels. Several excellent reviews have summarized key progress in various aspects of GBSS research in recent years, but they mostly focus on cereals. Herein, we provide an in-depth review of GBSS research in monocots and dicots, focusing on the molecular characteristics, evolutionary relationships, expression patterns, molecular regulation mechanisms, and applications. We also discuss future challenges and directions for controlling AC in starchy crops, and found simultaneously increasing both the PTST and GBSS gene expression levels may be an effective strategy to increase amylose content.
Collapse
Affiliation(s)
- Lei Wang
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Linling Liu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Jiali Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Chenglei Li
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Huala Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Haixia Zhao
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, China.
| |
Collapse
|
3
|
Lambrescu I, Popa A, Manole E, Ceafalan LC, Gaina G. Application of Droplet Digital PCR Technology in Muscular Dystrophies Research. Int J Mol Sci 2022; 23:ijms23094802. [PMID: 35563191 PMCID: PMC9099497 DOI: 10.3390/ijms23094802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
Although they are considered rare disorders, muscular dystrophies have a strong impact on people’s health. Increased disease severity with age, frequently accompanied by the loss of ability to walk in some people, and the lack of treatment, have directed the researchers towards the development of more effective therapeutic strategies aimed to improve the quality of life and life expectancy, slow down the progression, and delay the onset or convert a severe phenotype into a milder one. Improved understanding of the complex pathology of these diseases together with the tremendous advances in molecular biology technologies has led to personalized therapeutic procedures. Different approaches that are currently under extensive investigation require more efficient, sensitive, and less invasive methods. Due to its remarkable analytical sensitivity, droplet digital PCR has become a promising tool for accurate measurement of biomarkers that monitor disease progression and quantification of various therapeutic efficiency and can be considered a tool for non-invasive prenatal diagnosis and newborn screening. Here, we summarize the recent applications of droplet digital PCR in muscular dystrophy research and discuss the factors that should be considered to get the best performance with this technology.
Collapse
Affiliation(s)
- Ioana Lambrescu
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (I.L.); (A.P.); (E.M.); (L.C.C.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Alexandra Popa
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (I.L.); (A.P.); (E.M.); (L.C.C.)
- Department of Animal Production and Public Health, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 050097 Bucharest, Romania
| | - Emilia Manole
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (I.L.); (A.P.); (E.M.); (L.C.C.)
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Laura Cristina Ceafalan
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (I.L.); (A.P.); (E.M.); (L.C.C.)
- Department of Cell Biology and Histology, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Gisela Gaina
- Laboratory of Cell Biology, Neuroscience and Experimental Myology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (I.L.); (A.P.); (E.M.); (L.C.C.)
- Correspondence: ; Tel.: +40-21-319-2732
| |
Collapse
|
4
|
Digital PCR: What Relevance to Plant Studies? BIOLOGY 2020; 9:biology9120433. [PMID: 33266157 PMCID: PMC7760125 DOI: 10.3390/biology9120433] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/01/2023]
Abstract
Simple Summary Digital PCR is a third-generation technology based on the subdivision of the analytical sample into numerous partitions that are amplified individually. This review presents the major applications of digital PCR (dPCR) technology developed so far in the field of plant science. In greater detail, dPCR assays have been developed to trace genetically modified plant components, pathogenic and non-pathogenic microorganisms, and plant species. Other applications have concerned the study of the aspects of structural and functional genetics. Abstract Digital PCR (dPCR) is a breakthrough technology that able to provide sensitive and absolute nucleic acid quantification. It is a third-generation technology in the field of nucleic acid amplification. A unique feature of the technique is that of dividing the sample into numerous separate compartments, in each of which an independent amplification reaction takes place. Several instrumental platforms have been developed for this purpose, and different statistical approaches are available for reading the digital output data. The dPCR assays developed so far in the plant science sector were identified in the literature, and the major applications, advantages, disadvantages, and applicative perspectives of the technique are presented and discussed in this review.
Collapse
|