Yang S, Huang J, Qu Y, Zhang D, Tan Y, Wen S, Song Y. Phylogenetic incongruence in an Asiatic species complex of the genus Caryodaphnopsis (Lauraceae).
BMC PLANT BIOLOGY 2024;
24:616. [PMID:
38937691 PMCID:
PMC11212351 DOI:
10.1186/s12870-024-05050-3]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/19/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND
Caryodaphnopsis, a group of tropical trees (ca. 20 spp.) in the family Lauraceae, has an amphi-Pacific disjunct distribution: ten species are distributed in Southeast Asia, while eight species are restricted to tropical rainforests in South America. Previously, phylogenetic analyses using two nuclear markers resolved the relationships among the five species from Latin America. However, the phylogenetic relationships between the species in Asia remain poorly known.
RESULTS
Here, we first determined the complete mitochondrial genome (mitogenome), plastome, and the nuclear ribosomal cistron (nrDNA) sequences of C. henryi with lengths of 1,168,029 bp, 154,938 bp, and 6495 bp, respectively. We found 2233 repeats and 368 potential SSRs in the mitogenome of C. henryi and 50 homologous DNA fragments between its mitogenome and plastome. Gene synteny analysis revealed a mass of rearrangements in the mitogenomes of Magnolia biondii, Hernandia nymphaeifolia, and C. henryi and only six conserved clustered genes among them. In order to reconstruct relationships for the ten Caryodaphnopsis species in Asia, we created three datasets: one for the mitogenome (coding genes and ten intergenic regions), another for the plastome (whole genome), and the other for the nuclear ribosomal cistron. All of the 22 Caryodaphnopsis individuals were divided into four, five, and six different clades in the phylogenies based on mitogenome, plastome, and nrDNA datasets, respectively.
CONCLUSIONS
The study showed phylogenetic conflicts within and between nuclear and organellar genome data of Caryodaphnopsis species. The sympatric Caryodaphnopsis species in Hekou and Malipo SW China may be related to the incomplete lineage sorting, chloroplast capture, and/or hybridization, which mixed the species as a complex in their evolutionary history.
Collapse