1
|
Lafitte A, Sordello R, Ouédraogo DY, Thierry C, Marx G, Froidevaux J, Schatz B, Kerbiriou C, Gourdain P, Reyjol Y. Existing evidence on the effects of photovoltaic panels on biodiversity: a systematic map with critical appraisal of study validity. ENVIRONMENTAL EVIDENCE 2023; 12:25. [PMID: 39294828 PMCID: PMC11378773 DOI: 10.1186/s13750-023-00318-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/01/2023] [Indexed: 09/21/2024]
Abstract
BACKGROUND To phase out fossil fuels and reach a carbon-neutral future, solar energy and notably photovoltaic (PV) installations are being rapidly scaled up. Unlike other types of renewable energies such as wind and hydroelectricity, evidence on the effects of PV installations on biodiversity has been building up only fairly recently and suggests that they may directly impact ecosystems and species through, for instance, habitat change and loss, mortality, behaviour alteration or population displacements. Hence, we conducted a systematic map of existing evidence aiming at answering the following question: what evidence exists regarding the effects of PV installations on wild terrestrial and semi-aquatic species? METHODS We searched for relevant citations on four online publication databases, on Google Scholar, on four specialised websites and through a call for grey literature. Citations were then screened for eligibility in order to only retain citations referring to wild terrestrial and semi-aquatic species as well as PV and solar thermal installations, therefore excluding concentrated solar power. Accepted articles were first split into studies (corresponding to one experimental design) subjected to critical appraisal and then further split into observations (i.e. one population and one outcome) during metadata extraction. The current state of the literature was characterised and knowledge clusters and gaps identified. REVIEW FINDINGS Searching captured 8121 unique citations, which resulted in 158 relevant articles being accepted after screening. Even though the first article was published in 2005, the publication rate increased rapidly in 2020. The 97 included primary research and modelling articles were split into 137 unique studies and rated with either a low (43.8%), a high (41.6%) or an unclear overall risk of bias (14.6%) after internal validity assessment. Studies were further split into 434 observations, mainly carried out in the United States (23.0%) and the United Kingdom (21.0%), preferentially in temperate climates (64.5%). Plants and arthropods were the two most studied taxa (41.7% and 26.3%, respectively). Utility-scale solar energy (USSE) facilities were most often investigated (70.1%). Observations mainly focused on the effect of the presence of PV installations (51.8%). Species abundance, community composition and species diversity were the most common outcomes assessed (23.0%, 18.4% and 16.1%, respectively). CONCLUSIONS Three knowledge clusters for which a systematic review should be contemplated were identified: (i) the effects of PV installations on plant and (ii) arthropod communities and, (iii) their effects at a larger ecosystem scale on overall species abundance. However, the currently available evidence regarding the effects of photovoltaic installations on biodiversity is still scarce. More research is urgently needed on non-flying mammals and bats as well as amphibians and reptiles. Solar thermal panels and floating PV installations should also be further investigated. Studies comparing different designs of PV installations, management practices or contexts should be conducted as well. Indeed, more evidence is still needed to allow decision-makers to accurately and reliably select the types of PV installations and management practices that are least damaging to biodiversity.
Collapse
Affiliation(s)
- Alix Lafitte
- PatriNat (OFB (Office Français de la Biodiversité) - MNHN (Muséum National d'Histoire Naturelle)), 75005, Paris, France.
| | - Romain Sordello
- PatriNat (OFB (Office Français de la Biodiversité) - MNHN (Muséum National d'Histoire Naturelle)), 75005, Paris, France
| | - Dakis-Yaoba Ouédraogo
- PatriNat (OFB (Office Français de la Biodiversité) - MNHN (Muséum National d'Histoire Naturelle)), 75005, Paris, France
| | - Chloé Thierry
- PatriNat (OFB (Office Français de la Biodiversité) - MNHN (Muséum National d'Histoire Naturelle)), 75005, Paris, France
| | - Geoffroy Marx
- LPO (Ligue Pour la Protection Des Oiseaux), 17300, Rochefort, France
| | - Jérémy Froidevaux
- CESCO (Centre d'Ecologie et des Sciences de la Conservation), UMR 7204, Muséum National d'Histoire Naturelle (MNHN), 75005, Paris, France
- CNRS (Centre National de la Recherche Scientifique), Sorbonne Université, Station Marine, 29900, Concarneau, France
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, Scotland, UK
| | - Bertrand Schatz
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, 34090, Montpellier, France
| | - Christian Kerbiriou
- CESCO (Centre d'Ecologie et des Sciences de la Conservation), UMR 7204, Muséum National d'Histoire Naturelle (MNHN), 75005, Paris, France
| | - Philippe Gourdain
- PatriNat (OFB (Office Français de la Biodiversité) - MNHN (Muséum National d'Histoire Naturelle)), 75005, Paris, France
| | - Yorick Reyjol
- PatriNat (OFB (Office Français de la Biodiversité) - MNHN (Muséum National d'Histoire Naturelle)), 75005, Paris, France
| |
Collapse
|
2
|
Liu Z, Peng T, Ma S, Qi C, Song Y, Zhang C, Li K, Gao N, Pu M, Wang X, Bi Y, Na X. Potential benefits and risks of solar photovoltaic power plants on arid and semi-arid ecosystems: an assessment of soil microbial and plant communities. Front Microbiol 2023; 14:1190650. [PMID: 37588884 PMCID: PMC10427150 DOI: 10.3389/fmicb.2023.1190650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/07/2023] [Indexed: 08/18/2023] Open
Abstract
Exponential increase in photovoltaic installations arouses concerns regarding the impacts of large-scale solar power plants on dryland ecosystems. While the effects of photovoltaic panels on soil moisture content and plant biomass in arid ecosystems have been recognized, little is known about their influence on soil microbial communities. Here, we employed a combination of quantitative PCR, high-throughput sequencing, and soil property analysis to investigate the responses of soil microbial communities to solar panel installation. We also report on the responses of plant communities within the same solar farm. Our findings showed that soil microbial communities responded differently to the shading and precipitation-alternation effects of the photovoltaic panels in an arid ecosystem. By redirecting rainwater to the lower side, photovoltaic panels stimulated vegetation biomass and soil total organic carbon content in the middle and in front of the panels, positively contributing to carbon storage. The shade provided by the panels promoted the co-occurrence of soil microbes but inhibited the abundance of 16S rRNA gene in the soil. Increase in precipitation reduced 18S rRNA gene abundance, whereas decrease in precipitation led to decline in plant aboveground biomass, soil prokaryotic community alpha diversity, and dehydrogenase activity under the panels. These findings highlight the crucial role of precipitation in maintaining plant and soil microbial diversities in dryland ecosystems and are essential for estimating the potential risks of large-scale solar power plants on local and global climate change in the long term.
Collapse
Affiliation(s)
- Ziyu Liu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tong Peng
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Shaolan Ma
- No. 1 Middle School of Penyang, Guyuan, China
| | - Chang Qi
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yanfang Song
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Chuanji Zhang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Kaile Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Na Gao
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Meiyun Pu
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiaomin Wang
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yurong Bi
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xiaofan Na
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Siegmund GF, Geber MA. Statistical inference for seed mortality and germination with seed bank experiments. Ecology 2022; 104:e3948. [PMID: 36495246 DOI: 10.1002/ecy.3948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
Plant population ecologists regularly study soil seed banks with seed bag burial and seed addition experiments. These experiments contribute crucial data to demographic models, but we lack standard methods to analyze them. Here, we propose statistical models to estimate seed mortality and germination with observations from these experiments. We develop these models following the principles of event history analysis, and analyze their identifiability and statistical properties by algebraic methods and simulation. We demonstrate that seed bag burial, but not seed addition experiments, can be used to make inferences about age-dependent mortality and germination. When mortality and germination do not change with seed age, both experiments produce unbiased estimates but seed bag burial experiments are more precise. However, seed mortality and germination estimates may be inaccurate when the statistical model that is fit makes incorrect assumptions about the age dependence of mortality and germination. The statistical models and simulations that we present here can be adopted and modified by plant population ecologists to strengthen inferences about seed mortality and germination in the soil seed bank.
Collapse
Affiliation(s)
- Gregor-Fausto Siegmund
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - Monica A Geber
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
4
|
Wu C, Liu H, Yu Y, Zhao W, Liu J, Yu H, Yetemen O. Ecohydrological effects of photovoltaic solar farms on soil microclimates and moisture regimes in arid Northwest China: A modeling study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149946. [PMID: 34525759 DOI: 10.1016/j.scitotenv.2021.149946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Photovoltaic technology plays an important role in the sustainable development of clean energy, and arid areas are particularly ideal locations to build large-scale solar farms, all over the world. Modifications to the energy balance and water availability through the installation of large-scale solar farms, however, fundamentally affect the energy budget, water, and biogeochemical cycles. In-situ field observations, though, fail to draw definitive conclusions on how photovoltaic panels (PVs) affect the ambient environment, or how microclimates and soil moisture evolve under the long-term, continuous, cumulative influence of PVs. Here, we designed a synthetic model, integrating processes of energy budget and water cycle, to quantify the ecohydrological effects of PVs on soil microclimate and moisture regimes at different locations (zones) near individual PVs. Simulations run with a stochastically generated 100-year climate time series were examined to capture the evolutionary trends of soil microclimate and soil moisture. The results indicate that soil moisture content was increased by 59.8% to 113.6% in the Middle and Front zones, and soil temperature was decreased by 1.47 to 1.66 °C in all the sheltered zones, mainly because there was 5- 7 times more available water and ~27% less available radiation there, compared with the control zone. On the other hand, if the ground clearance of the PVs is too low, turbulence beneath hot PVs will have a significant influence on not only soil temperature but also soil moisture content. The innovative contribution of this study lies in reinforcing existing theoretical patterns for the development of soil microclimate and moisture dynamics influenced by PVs, and can be used to provide reliable insights into the hydrological and biogeochemical processes on Earth and the sustainable management of large-scale solar farms in arid ecosystems.
Collapse
Affiliation(s)
- Chuandong Wu
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Lanzhou 730000, China; Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100029, China
| | - Hu Liu
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Lanzhou 730000, China; Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Yang Yu
- School of Soil and Water Conservation, Beijing Forestry University, Beijing 100038, China
| | - Wenzhi Zhao
- Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Lanzhou 730000, China; Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jintao Liu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| | - Hailong Yu
- School of Geography and Planning, Ningxia University, Yinchuan 750021, China
| | - Omer Yetemen
- Eurasia Institute of Earth Sciences, Istanbul Technical University, Maslak, Istanbul 34469, Turkey
| |
Collapse
|
5
|
Tanner KE, Moore‐O’Leary KA, Parker IM, Pavlik BM, Haji S, Hernandez RR. Microhabitats associated with solar energy development alter demography of two desert annuals. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02349. [PMID: 33817888 PMCID: PMC8459290 DOI: 10.1002/eap.2349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/24/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Political and economic initiatives intended to increase energy production while reducing carbon emissions are driving demand for solar energy. Consequently, desert regions are now targeted for development of large-scale photovoltaic solar energy facilities. Where vegetation communities are left intact or restored within facilities, ground-mounted infrastructure may have negative impacts on desert-adapted plants because it creates novel rainfall runoff and shade conditions. We used experimental solar arrays in the Mojave Desert to test how these altered conditions affect population dynamics for a closely related pair of native annual plants: rare Eriophyllum mohavense and common E. wallacei. We estimated aboveground demographic rates (seedling emergence, survivorship, and fecundity) over 7 yr and used seed bank survival rates from a concurrent study to build matrix models of population growth in three experimental microhabitats. In drier years, shade tended to reduce survival of the common species, but increase survival of the rare species. In a wet year, runoff from panels tended to increase seed output for both species. Population growth projections from microhabitat-specific matrix models showed stronger effects of microhabitat under wetter conditions, and relatively little effect under dry conditions (lack of rainfall was an overwhelming constraint). Performance patterns across microhabitats in the wettest year differed between rare and common species. Projected growth of E. mohavense was substantially reduced in shade, mediated by negative effects on aboveground demographic rates. Hence, the rare species were more susceptible to negative effects of panel infrastructure in wet years that are critical to seed bank replenishment. Our results suggest that altered shade and water runoff regimes associated with energy infrastructure will have differential effects on demographic transitions across annual species and drive population-level processes that determine local abundance, resilience, and persistence.
Collapse
Affiliation(s)
- Karen E. Tanner
- Ecology and Evolutionary Biology DepartmentUniversity of California1156 High StreetSanta CruzCalifornia95064USA
| | - Kara A. Moore‐O’Leary
- Department of Evolution and EcologyUniversity of CaliforniaOne Shields AvenueDavisCalifornia95616USA
- Present address:
U.S. Fish and Wildlife ServicePacific Southwest Region3020 State University Drive EastSacramentoCalifornia95819USA
| | - Ingrid M. Parker
- Ecology and Evolutionary Biology DepartmentUniversity of California1156 High StreetSanta CruzCalifornia95064USA
| | - Bruce M. Pavlik
- Conservation DepartmentRed Butte Garden and ArboretumUniversity of UtahSalt Lake CityUtah84108USA
| | - Sophia Haji
- Ecology and Evolutionary Biology DepartmentUniversity of California1156 High StreetSanta CruzCalifornia95064USA
| | - Rebecca R. Hernandez
- Department of Land, Air & Water ResourcesUniversity of CaliforniaOne Shields AvenueDavisCalifornia95616USA
- Wild Energy InitiativeJohn Muir Institute of the EnvironmentUniversity of CaliforniaOne Shields AvenueDavisCalifornia95616USA
| |
Collapse
|
6
|
Tanner KE, Moore-O'Leary KA, Parker IM, Pavlik BM, Haji S, Hernandez RR. Microhabitats associated with solar energy development alter demography of two desert annuals. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021. [PMID: 33817888 DOI: 10.7291/d1st01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Political and economic initiatives intended to increase energy production while reducing carbon emissions are driving demand for solar energy. Consequently, desert regions are now targeted for development of large-scale photovoltaic solar energy facilities. Where vegetation communities are left intact or restored within facilities, ground-mounted infrastructure may have negative impacts on desert-adapted plants because it creates novel rainfall runoff and shade conditions. We used experimental solar arrays in the Mojave Desert to test how these altered conditions affect population dynamics for a closely related pair of native annual plants: rare Eriophyllum mohavense and common E. wallacei. We estimated aboveground demographic rates (seedling emergence, survivorship, and fecundity) over 7 yr and used seed bank survival rates from a concurrent study to build matrix models of population growth in three experimental microhabitats. In drier years, shade tended to reduce survival of the common species, but increase survival of the rare species. In a wet year, runoff from panels tended to increase seed output for both species. Population growth projections from microhabitat-specific matrix models showed stronger effects of microhabitat under wetter conditions, and relatively little effect under dry conditions (lack of rainfall was an overwhelming constraint). Performance patterns across microhabitats in the wettest year differed between rare and common species. Projected growth of E. mohavense was substantially reduced in shade, mediated by negative effects on aboveground demographic rates. Hence, the rare species were more susceptible to negative effects of panel infrastructure in wet years that are critical to seed bank replenishment. Our results suggest that altered shade and water runoff regimes associated with energy infrastructure will have differential effects on demographic transitions across annual species and drive population-level processes that determine local abundance, resilience, and persistence.
Collapse
Affiliation(s)
- Karen E Tanner
- Ecology and Evolutionary Biology Department, University of California, 1156 High Street, Santa Cruz, California, 95064, USA
| | - Kara A Moore-O'Leary
- Department of Evolution and Ecology, University of California, One Shields Avenue, Davis, California, 95616, USA
| | - Ingrid M Parker
- Ecology and Evolutionary Biology Department, University of California, 1156 High Street, Santa Cruz, California, 95064, USA
| | - Bruce M Pavlik
- Conservation Department, Red Butte Garden and Arboretum, University of Utah, Salt Lake City, Utah, 84108, USA
| | - Sophia Haji
- Ecology and Evolutionary Biology Department, University of California, 1156 High Street, Santa Cruz, California, 95064, USA
| | - Rebecca R Hernandez
- Department of Land, Air & Water Resources, University of California, One Shields Avenue, Davis, California, 95616, USA
- Wild Energy Initiative, John Muir Institute of the Environment, University of California, One Shields Avenue, Davis, California, 95616, USA
| |
Collapse
|
7
|
Kim JY, Koide D, Ishihama F, Kadoya T, Nishihiro J. Current site planning of medium to large solar power systems accelerates the loss of the remaining semi-natural and agricultural habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146475. [PMID: 33752006 DOI: 10.1016/j.scitotenv.2021.146475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
The global transition to renewable energy sources has accelerated to mitigate the effects of global climate change. Sudden increases in solar power facilities have caused the physical destruction of wildlife habitats, thereby resulting in the decline of biodiversity and ecosystem functions. However, previous assessments have been based on the environmental impact of large solar photovoltaics (PVs). The impact of medium-sized PV facilities (0.5-10 MW), which can alter small habitat patches through the accumulation of installations has not been assessed. Here, we quantified the amount of habitat loss directly related to the construction of PV facilities with different size classes and estimated their siting attributes using construction patterns in Japan and South Korea. We identified that a comparable amount of natural and semi-natural habitats were lost due to the recent installation of medium solar facilities (approximately 66.36 and 85.73% of the overall loss in Japan and South Korea, respectively). Compared to large solar PVs, medium PV installations resulted in a higher area loss of semi-natural habitats, including secondary/planted forests, secondary/artificial grasslands, and agricultural lands. The siting attributes of medium and large solar PV facilities indicated a preference for cost-based site selection rather than prioritizing habitat protection for biodiversity conservation. Moreover, even conservation areas were developed when economic and topological conditions were suitable for energy production. Our simulations indicate that increasing the construction of PVs in urban areas could help reduce the loss of natural and semi-natural habitats. To improve the renewable energy share while mitigating the impacts on biodiversity, our results stress the need for a proactive assessment to enforce sustainable site-selection criteria for solar PVs in renewable energy initiatives. The revised criteria should consider the cumulative impacts of varied size classes of solar power facilities, including medium PVs, and the diverse aspects of the ecological value of natural habitats.
Collapse
Affiliation(s)
- Ji Yoon Kim
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba 305-8506, Japan.
| | - Dai Koide
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Fumiko Ishihama
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Taku Kadoya
- Center for Environmental Biology and Ecosystem Studies, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| | - Jun Nishihiro
- Center for Climate Change Adaptation, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
| |
Collapse
|