1
|
Guo L, Wang J, Zhou Y, Liang C, Liu L, Yang Y, Huang J, Yang L. Foisc1 regulates growth, conidiation, sensitivity to salicylic acid, and pathogenicity of Fusarium oxysporum f. sp. cubense tropical race 4. Microbiol Res 2025; 291:127975. [PMID: 39608178 DOI: 10.1016/j.micres.2024.127975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024]
Abstract
The secreted isochorismatases derived from certain filamentous pathogens play vital roles in the infection of host plants by lowering salicylic acid (SA) levels and suppressing SA-mediated defense pathway. However, it remains unclear whether the fungus Fusarium oxysporum f. sp. cubense tropical race 4 (FocTR4), which causes vascular wilt in bananas, utilizes isochorismatases to modulate SA levels in the host and subvert the banana defense system for successful infection. In the current study, we selected and functionally characterized the foisc1 gene, one of 10 putative isochorismatase-encoding genes in FocTR4 that showed significant upregulation during early stages of infection. Deletion of foisc1 resulted in enhanced vegetative growth and conidiation, increased sensitivity to SA, reduced colonization within host plants, as well as impaired pathogenicity. Conversely, complementation restored phenotypes similar to those observed in the wild-type strain. Furthermore, deletion of foisc1 led to a notable rise in activities of defense-related enzymes such as catalase, peroxidase, and phenylalnine ammonialyase; along with an upregulated expression of several defense-related genes including PR genes and NPR1 genes within hosts' tissues. The non-secretory nature of Foisc1 protein was confirmed and its absence did not affect SA levels within host plants. Transcriptome analysis revealed that deletion of foisc1 resulted in decreased expression levels for numerous genes associated with pathogenicity including those involved in fusaric acid biosynthesis and effector genes as well as a catechol 1,2-dioxygenase gene essential for SA degradation; while increasing expression levels for numerous genes associated with hyphal growth and conidiation were observed instead. Therefore, our findings suggest that Foisc1 may influence hyphal growth, conidiation, sensitivity to SA, and pathogenicity of FocTR4 through modulation of various genes implicated in these processes. These findings provide valuable insights into the pathogenesis of FocTR4, and create a groundwork for the future development of innovative control strategies targeting vascular wilt disease of banana.
Collapse
Affiliation(s)
- Lijia Guo
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China.
| | - Jun Wang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China
| | - You Zhou
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China
| | - Changcong Liang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China
| | - Lei Liu
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China
| | - Yang Yang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China
| | - Junsheng Huang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China
| | - Laying Yang
- Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs, Haikou, PR China; Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, PR China; National Collection of Microbial Resource for Fertilizer (Hainan), PR China; Collection of Tropical Agricultural Microbial Resource in Hainan province, PR China.
| |
Collapse
|
2
|
Dziągwa-Becker M, Oleszek M. Is the Biopesticide from Tea Tree Oil an Effective and Low-Risk Alternative to Chemical Pesticides? A Critical Review. Molecules 2024; 29:3248. [PMID: 39064827 PMCID: PMC11278977 DOI: 10.3390/molecules29143248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The use of chemical pesticides in agriculture contributes to soil, water and air pollution, biodiversity loss, and injury to non-target species. The European Commission has already established a Harmonized Risk Indicator to quantify the progress in reducing the risks linked to pesticides. Therefore, there is an increasing need to promote biopesticides, or so-called low-risk pesticides (LRP). Tea tree oil (TTO) is known for its antiseptic, antimicrobial, antiviral, antifungal, and anti-inflammatory properties. TTO has been extensively studied in pest management as well as in the pharmaceutical and cosmetic industry; there are already products based on its active substances on the market. This review focuses on the overall evaluation of TTO in terms of effectiveness and safety as a biopesticide for the first time. The collected data can be an added value for further evaluation of TTO in terms of the authorization extension as a fungicide in 2026.
Collapse
Affiliation(s)
- Magdalena Dziągwa-Becker
- Department of Weed Science and Tillage Systems, Institute of Soil Science and Plant Cultivation, State Research Institute, Wrocław ul. Orzechowa 61, 50-540 Wrocław, Poland
| | - Marta Oleszek
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Puławy, Poland;
| |
Collapse
|
3
|
Paramalingam P, Baharum NA, Abdullah JO, Hong JK, Saidi NB. Antifungal Potential of Melaleuca alternifolia against Fungal Pathogen Fusarium oxysporum f. sp. cubense Tropical Race 4. Molecules 2023; 28:molecules28114456. [PMID: 37298932 DOI: 10.3390/molecules28114456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Fusarium wilt of bananas caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (Foc TR4) poses the most serious threat to banana production globally. The disease has been managed using chemical fungicides, yet the control levels are still unsatisfactory. This study investigated the antifungal activities of tea tree (Melaleuca alternifolia) essential oil (TTO) and hydrosol (TTH) against Foc TR4 and their bioactive components. The potential of TTO and TTH in inhibiting the growth of Foc TR4 was evaluated in vitro using agar well diffusion and spore germination assays. Compared to the chemical fungicide, TTO effectively suppressed the mycelial growth of Foc TR4 at 69%. Both the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of TTO and TTH were established at 0.2 µg/µL and 50% v/v, respectively, suggesting the fungicidal nature of the plant extracts. The disease control efficacies were also demonstrated by a (p ≤ 0.05) delayed Fusarium wilt symptom development in the susceptible banana plants with reduced LSI dan RDI scores from 70% to around 20-30%. A GC/MS analysis of TTO identified terpinen-4-ol, eucalyptol, and α-terpineol as the major components. In contrast, an LC/MS analysis of TTH identified different compounds, including dihydro-jasmonic acid and methyl ester. Our findings indicate the potential of tea tree extracts as natural alternatives to chemical fungicides to control Foc TR4.
Collapse
Affiliation(s)
- Pavitra Paramalingam
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nadiya Akmal Baharum
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Janna Ong Abdullah
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Jeum Kyu Hong
- Division of Horticultural Science, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea
- Agri-Food Bio Convergence Institute, Gyeongsang National University, 33 Dongjin-ro, Jinju 52725, Republic of Korea
| | - Noor Baity Saidi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Sustainable Agronomy and Crop Protection, Institute of Plantation Studies, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
4
|
Zhou GD, He P, Tian L, Xu S, Yang B, Liu L, Wang Y, Bai T, Li X, Li S, Zheng SJ. Disentangling the resistant mechanism of Fusarium wilt TR4 interactions with different cultivars and its elicitor application. FRONTIERS IN PLANT SCIENCE 2023; 14:1145837. [PMID: 36938065 PMCID: PMC10018200 DOI: 10.3389/fpls.2023.1145837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Fusarium wilt of banana, especially Tropical Race 4 (TR4) is a major factor restricting banana production. Developing a resistant cultivar and inducing plant defenses by elicitor application are currently two of the best options to control this disease. Isotianil is a monocarboxylic acid amide that has been used as a fungicide to control rice blast and could potentially induce systemic acquired resistance in plants. To determine the control effect of elicitor isotianil on TR4 in different resistant cultivars, a greenhouse pot experiment was conducted and its results showed that isotianil could significantly alleviate the symptoms of TR4, provide enhanced disease control on the cultivars 'Baxi' and 'Yunjiao No.1' with control effect 50.14% and 56.14%, respectively. We compared the infection processes in 'Baxi' (susceptible cultivars) and 'Yunjiao No.1' (resistant cultivars) two cultivars inoculated with pathogen TR4. The results showed that TR4 hyphae could rapidly penetrate the cortex into the root vascular bundle for colonization, and the colonization capacity in 'Baxi' was significantly higher than that in 'Yunjiao No.1'. The accumulation of a large number of starch grains was observed in corms cells, and further analysis showed that the starch content in 'Yunjiao No. 1' as resistant cultivar was significantly higher than that in 'Baxi' as susceptible cultivar, and isotianil application could significantly increase the starch content in 'Baxi'. Besides, a mass of tyloses were observed in the roots and corms and these tyloses increased after application with isotianil. Furthermore, the total starch and tyloses contents and the control effect in the corms of 'Yunjiao No.1' was higher than that in the 'Baxi'. Moreover, the expression levels of key genes for plant resistance induction and starch synthesis were analyzed, and the results suggested that these genes were significantly upregulated at different time points after the application of isotianil. These results suggest that there are significant differences between cultivars in response to TR4 invasion and plant reactions with respect to starch accumulation, tyloses formation and the expression of plant resistance induction and starch synthesis related genes. Results also indicate that isotianil application may contribute to disease control by inducing host plant defense against TR4 infection and could be potentially used together with resistant cultivar as integrated approach to manage this destructive disease. Further research under field conditions should be included in the next phases of study.
Collapse
Affiliation(s)
- Guang-Dong Zhou
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Center For Potato Research, Resource Plant Research Institute, Yunnan University, Kunming, Yunnan, China
| | - Ping He
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Ministry of Education Key Laboratory of Agriculture Biodiversity for Plant Disease Management, College of Plant Protection, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Libo Tian
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Center For Potato Research, Resource Plant Research Institute, Yunnan University, Kunming, Yunnan, China
| | - Shengtao Xu
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Baoming Yang
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Lina Liu
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Yongfen Wang
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Institute of Tropical and Subtropical Industry Crops, Yunnan Academy of Agricultural Sciences, Baoshan, China
| | - Tingting Bai
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Xundong Li
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Shu Li
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Si-Jun Zheng
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
- Bioversity International, Kunming, Yunnan, China
| |
Collapse
|
5
|
Refik Bozbuga. Commonalities of Molecular Response in Tomato Plants against Parasitic Nematodes. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021150036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Li Z, Wei Y, Cao Z, Jiang S, Chen Y, Shao X. The Jasmonic Acid Signaling Pathway is Associated with Terpinen-4-ol-Induced Disease Resistance against Botrytis cinerea in Strawberry Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:10678-10687. [PMID: 34468130 DOI: 10.1021/acs.jafc.1c04608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Terpinen-4-ol, the main component of tea tree oil, markedly increases the disease resistance of postharvest strawberry fruit. To understand the mechanism underlying the enhancement of disease resistance, a high-throughput RNA-seq was used to analyze gene transcription in terpinen-4-ol-treated and untreated fruit. The results show that terpinen-4-ol induces the expression of genes in the jasmonic acid (JA) biosynthesis pathway, secondary metabolic pathways such as phenylpropanoid biosynthesis, and pathways involved in plant-pathogen interactions. Terpinen-4-ol treatment reduced disease incidence and lesion diameter in strawberry fruit inoculated with Botrytis cinerea. Terpinen-4-ol treatment enhanced the expression of genes involved in JA synthesis (FaLOX, FaAOC, and FaOPR3) and signaling (FaCOI1), as well as genes related to disease defense (FaPAL, FaCHI, and FaGLU). In contrast, treatment with the JA biosynthesis inhibitor salicylhydroxamic acid (SHAM) accelerated disease development and inhibited the induction of gene expressions by terpinen-4-ol. We conclude that the JA pathway participates in the induction of disease resistance by terpinen-4-ol in strawberry fruit. More generally, the results illuminate the mechanisms by which disease resistance is enhanced by essential oils.
Collapse
Affiliation(s)
- Zhenbiao Li
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Yingying Wei
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Zidan Cao
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Shu Jiang
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Yi Chen
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| | - Xingfeng Shao
- College of Food and Pharmaceutical Sciences, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo 315800, China
| |
Collapse
|
7
|
Abbasi S, Sadeghi A, Omidvari M, Tahan V. The stimulators and responsive genes to induce systemic resistance against pathogens: An exclusive focus on tomato as a model plant. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|