1
|
Liao Y, Liu X, Xu N, Chen G, Qiao X, Gu Q, Wang Y, Sun J. Fine mapping and identification of ERF transcription factor ERF017 as a candidate gene for cold tolerance in pumpkin. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:230. [PMID: 39320412 DOI: 10.1007/s00122-024-04720-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024]
Abstract
KEY MESSAGE Two major QTLs for cold tolerance in pumpkin were localised, and CmoERF017 was identified as a key candidate gene within these QTLs via RNA-seq. Functional analysis revealed that CmoERF017 was a positive regulator of pumpkin in response to low-temperature stress. Low temperature is a key environmental factor that affects the protected cultivation of cucumber (Cucumis sativus L.) in winter, and the cold tolerance of cucumber/pumpkin-grafted seedlings depends on the rootstock. Pumpkin (Cucurbita spp.) has a well-developed root system, high resistance and wide adaptation, commonly used as rootstock for cucumber to improve the cold tolerance of grafted seedlings. This study used two high-generation inbred lines of Cucurbita moschata with significant differences in cold tolerance. We identified key candidate genes within the major cold tolerance QTL of rootstocks using QTL-seq and RNA-seq and investigated the function and molecular mechanisms of these genes in response to low-temperature stress. Results showed that QTL-seq located two cold tolerance QTLs, qCII-1 and qCII-2, while RNA-seq located 28 differentially expressed genes within these QTLs. CmoERF017 was finally identified as a key candidate gene. Functional validation results indicated that CmoERF017 is a positive regulator of pumpkin in response to low-temperature stress and affected root ABA synthesis and signalling by directly regulating the expression of SDR7 and ABI5. This study identified a key gene for low-temperature stress tolerance in rootstock pumpkin and clarified its role in the molecular mechanism of hormone-mediated plant cold tolerance. The study findings enrich the theoretical understanding of low-temperature stress tolerance in pumpkin and are valuable for the selection and breeding of cold-tolerant varieties of pumpkin used for rootstocks.
Collapse
Affiliation(s)
- Yarong Liao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoying Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Na Xu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangling Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinhui Qiao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qinsheng Gu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Yu Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
2
|
Basavaraj PS, Jangid KK, Babar R, Rane J, Boraiah KM, Harisha CB, Halli H, Pradhan A, Tripathi K, Sammi Reddy K, Prabhakar M. Non-invasive measurements to identify mungbean genotypes for waterlogging tolerance. PeerJ 2024; 12:e16872. [PMID: 38410803 PMCID: PMC10896077 DOI: 10.7717/peerj.16872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/10/2024] [Indexed: 02/28/2024] Open
Abstract
As the best-fit leguminous crop for intercropping across time and space, mungbean promises to sustain soil health, carbon sequestration, and nutritional security across the globe. However, it is susceptible to waterlogging, a significant constraint that persists during heavy rains. Since the predicted climate change scenario features fewer but more intense rainy days. Hence, waterlogging tolerance in mungbean has been one of the major breeding objectives. The present experiment aimed to employ non-destructive tools to phenotype stress tolerance traits in mungbean genotypes exposed to waterlogging and estimate the association among the traits. A total of 12 mungbean genotypes were used in the present study to assess waterlogging tolerance at the seedling stage. Plant responses to stress were determined non-destructively using normalized difference vegetation index (NDVI) and chlorophyll fluorescence parameters at different time intervals. NDVI and grain yield were positively associated with control (r = 0.64) and stress (r = 0.59). Similarly, chlorophyll fluorescence (quantum yield of PS-II) also had a significant positive association with grain yield under both control (r = 0.52) and stress (r = 0.66) conditions. Hence, it is suggested that NDVI and chlorophyll fluorescence promise to serve as traits for non-destructive phenotyping waterlogging tolerance in mungbean genotypes. With the methods proposed in our study, it is possible to phenotype hundreds of plants for waterlogging tolerance efficiently.
Collapse
Affiliation(s)
- P S Basavaraj
- ICAR-National Institute of Abiotic Stress Management, Baramati, Baramati, India
| | | | - Rohit Babar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Baramati, India
| | - Jagadish Rane
- ICAR-National Institute of Abiotic Stress Management, Baramati, Baramati, India
- ICAR-Central Institute for Arid Horticulture, Bikaner, India
| | - K M Boraiah
- ICAR-National Institute of Abiotic Stress Management, Baramati, Baramati, India
| | - C B Harisha
- ICAR-National Institute of Abiotic Stress Management, Baramati, Baramati, India
| | - Hanamanth Halli
- ICAR-National Institute of Abiotic Stress Management, Baramati, Baramati, India
| | - Aliza Pradhan
- ICAR-National Institute of Abiotic Stress Management, Baramati, Baramati, India
| | - Kuldeep Tripathi
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - K Sammi Reddy
- ICAR-National Institute of Abiotic Stress Management, Baramati, Baramati, India
| | - M Prabhakar
- ICAR-Central Research Institute for Dryland Agriculture, Hyderabad, India
| |
Collapse
|
3
|
Waterlogging Stress Induces Antioxidant Defense Responses, Aerenchyma Formation and Alters Metabolisms of Banana Plants. PLANTS 2022; 11:plants11152052. [PMID: 35956531 PMCID: PMC9370344 DOI: 10.3390/plants11152052] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/28/2022]
Abstract
Flooding caused or exacerbated by climate change has threatened plant growth and food production worldwide. The lack of knowledge on how crops respond and adapt to flooding stress imposes a major barrier to enhancing their productivity. Hence, understanding the flooding-responsive mechanisms of crops is indispensable for developing new flooding-tolerant varieties. Here, we examined the banana (Musa acuminata cv. Berangan) responses to soil waterlogging for 1, 3, 5, 7, 14, and 24 days. After waterlogging stress, banana root samples were analyzed for their molecular and biochemical changes. We found that waterlogging treatment induced the formation of adventitious roots and aerenchyma with conspicuous gas spaces. In addition, the antioxidant activities, hydrogen peroxide, and malondialdehyde contents of the waterlogged bananas increased in response to waterlogging stress. To assess the initial response of bananas toward waterlogging stress, we analyzed the transcriptome changes of banana roots. A total of 3508 unigenes were differentially expressed under 1-day waterlogging conditions. These unigenes comprise abiotic stress-related transcription factors, such as ethylene response factors, basic helix-loop-helix, myeloblastosis, plant signal transduction, and carbohydrate metabolisms. The findings of the study provide insight into the complex molecular events of bananas in response to waterlogging stress, which could later help develop waterlogging resilient crops for the future climate.
Collapse
|
4
|
Olorunwa OJ, Adhikari B, Brazel S, Popescu SC, Popescu GV, Barickman TC. Short waterlogging events differently affect morphology and photosynthesis of two cucumber ( Cucumis sativus L.) cultivars. FRONTIERS IN PLANT SCIENCE 2022; 13:896244. [PMID: 35937378 PMCID: PMC9355484 DOI: 10.3389/fpls.2022.896244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Waterlogging induces growth and developmental changes in sensitive crops such as cucumber (Cucumis sativus L.) during early plant development. However, information on the physiological mechanisms underpinning the response of cucumber plants to waterlogging conditions is limited. Here, we investigated the effects of 10-day waterlogging stress on the morphology, photosynthesis, and chlorophyll fluorescence parameters in two cultivars of cucumber seedlings. Waterlogging stress hampered cultivars' growth, biomass accumulation, and photosynthetic capacity. Both cultivars also developed adventitious roots (ARs) after 10 days of waterlogging (DOW). We observed differential responses in the light- and carbon-dependent reactions of photosynthesis, with an increase in light-dependent reactions. At the same time, carbon assimilation was considerably inhibited by waterlogging. Specifically, the CO2 assimilation rate (A) in leaves was significantly reduced and was caused by a corresponding decrease in stomatal conductance (gs). The downregulation of the maximum rate of Rubisco efficiency (Vcmax) and the maximum rate of photosynthetic electron transport (Jmax) were non-stomatal limiting factors contributing to A reduction. Exposure of cucumber to 10 DOW affected the PSII photochemistry by downregulating the PSII quantum yield (ΦPSII). The redox state of the primary quinone acceptor in the lake model (1-qL), a measure of the regulatory balance of the light reactions, became more oxidized after 10 DOW, indicating enhanced electron sink capacity despite a reduced A. Overall, the results suggest that waterlogging induces alterations in the photochemical apparatus efficiency of cucumber. Thus, developing cultivars that resist inhibition of PSII photochemistry while maintaining carbon metabolism is a potential approach for increasing crops' tolerance to waterlogged environments.
Collapse
Affiliation(s)
- Omolayo J. Olorunwa
- Department of Plant and Soil Sciences, North Mississippi Research and Extension Center, Mississippi State University, Starkville, MS, United States
| | - Bikash Adhikari
- Department of Plant and Soil Sciences, North Mississippi Research and Extension Center, Mississippi State University, Starkville, MS, United States
| | - Skyler Brazel
- Department of Plant and Soil Sciences, North Mississippi Research and Extension Center, Mississippi State University, Starkville, MS, United States
| | - Sorina C. Popescu
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - George V. Popescu
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Starkville, MS, United States
| | - T. Casey Barickman
- Department of Plant and Soil Sciences, North Mississippi Research and Extension Center, Mississippi State University, Starkville, MS, United States
| |
Collapse
|