1
|
Petrokas R, Manton M, Kavaliauskas D. Tree regeneration and ontogenetic strategies of northern European hemiboreal forests: transitioning towards closer-to-nature forest management. PeerJ 2024; 12:e17644. [PMID: 39131610 PMCID: PMC11317037 DOI: 10.7717/peerj.17644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/06/2024] [Indexed: 08/13/2024] Open
Abstract
Background Tree ontogeny is the genetic trajectories of regenerative processes in trees, repeating in time and space, including both development and reproduction. Understanding the principles of tree ontogeny is a key priority in emulating natural ecological patterns and processes that fall within the calls for closer-to-nature forest management. By recognizing and respecting the growth and development of individual trees and forest stands, forest managers can implement strategies that align with the inherent dynamics of forest ecosystem. Therefore, this study aims to determine the ontogenetic characteristics of tree regeneration and growth in northern European hemiboreal forests. Methodology We applied a three-step process to review i) the ontogenetic characteristics of forest trees, ii) ontogenetic strategies of trees for stand-forming species, and iii) summarise the review findings of points i and ii to propose a conceptual framework for transitioning towards closer-to-nature management of hemiboreal forest trees. To achieve this, we applied the super-organism approach to forest development as a holistic progression towards the establishment of natural stand forming ecosystems. Results The review showed multiple aspects; first, there are unique growth and development characteristics of individual trees at the pre-generative and generative stages of ontogenesis under full and minimal light conditions. Second, there are four main modes of tree establishment, growth and development related to the light requirements of trees; they were described as ontogenetic strategies of stand-forming tree species: gap colonisers, gap successors, gap fillers and gap competitors. Third, the summary of our analysis of the ontogenetic characteristics of tree regeneration and growth in northern European hemiboreal forests shows that stand-forming species occupy multiple niche positions relative to forest dynamics modes. Conclusions This study demonstrates the importance of understanding tree ontogeny under the pretext of closer-to-nature forest management, and its potential towards formulating sustainable forest management that emulates the natural dynamics of forest structure. We suggest that scientists and foresters can adapt closer-to-nature management strategies, such as assisted natural regeneration of trees, to improve the vitality of tree communities and overall forest health. The presented approach prioritizes ecological integrity and forest resilience, promoting assisted natural regeneration, and fostering adaptability and connectivity among plant populations in hemiboreal tree communities.
Collapse
Affiliation(s)
- Raimundas Petrokas
- Department of Forest Genetics and Tree Breeding, Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Girionys, Kaunas, Lithuania
| | - Michael Manton
- Bioeconomy Research Institute, Vytautas Magnus University, Akademija, Kaunas, Lithuania
| | - Darius Kavaliauskas
- Department of Forest Genetics and Tree Breeding, Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Girionys, Kaunas, Lithuania
- Bioeconomy Research Institute, Vytautas Magnus University, Akademija, Kaunas, Lithuania
| |
Collapse
|
2
|
Petrokas R, Manton M. Adaptive Relationships in Hemi-Boreal Forests: Tree Species Responses to Competition, Stress, and Disturbance. PLANTS (BASEL, SWITZERLAND) 2023; 12:3256. [PMID: 37765418 PMCID: PMC10535793 DOI: 10.3390/plants12183256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
European Union forest policy calls for closer-to-nature forest management, but natural disturbances and forest succession are ecological phenomena that are difficult to characterize and integrate into sustainable forest management practices. Therefore, the aim of this study is to explore the adaptive properties of Lithuania's hemi-boreal forest ecosystems. To accomplish this, we first reviewed (i) the potential natural forest communities, (ii) the successional dynamics, and (iii) adaptive strategies of forest trees, and second, we synthesised the adaptive relationships using these three reviews. The results firstly identified that Lithuania's potential natural forests are broadly divided into two climatically based zonal formations: (i) mesophytic and hygromesophytic coniferous and broadleaved forests and (ii) mesophytic deciduous broadleaved and coniferous-broadleaved forests. Secondly, the review of successional dynamics showed that each tree species can be categorised into various end communities and plant functional groups. Using the differences in tree establishment and phenological development modes we identified four forest dynamic types of tree adaptive strategies: stress-resistant ruderals, competitive stress-sensitive ruderals, ruderal stress-sensitive competitors, and stress-resistant competitors. Such functional redundancy leads to a variety of tree responses to competition, stress, and disturbance, which reduces the risk of loss of forest ecosystem functioning. Finally, the synthesised review on the adaptive relationships of each forest tree community shows both the niche position of each hemi-boreal forest tree species and how they should be managed in the organization of plant communities. We believe that this research can serve as a guide for future relevant research and the development of appropriate methods for sustainable forest management.
Collapse
Affiliation(s)
- Raimundas Petrokas
- Department of Forest Genetics and Tree Breeding, Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų g. 1, LT-53101 Girionys, Lithuania
| | - Michael Manton
- Bioeconomy Research Institute, Vytautas Magnus University, Studentų g. 13, LT-53362 Akademija, Lithuania
| |
Collapse
|
3
|
Dietrich P, Ferlian O, Huang Y, Luo S, Quosh J, Eisenhauer N. Tree diversity effects on productivity depend on mycorrhizae and life strategies in a temperate forest experiment. Ecology 2023; 104:e3896. [PMID: 36215064 DOI: 10.1002/ecy.3896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 02/03/2023]
Abstract
Tree species are known to predominantly interact either with arbuscular mycorrhizal (AM) or ectomycorrhizal (EM) fungi. However, there is a knowledge gap regarding whether these mycorrhizae differently influence biodiversity-ecosystem functioning (BEF) relationships and whether a combination of both can increase community productivity. In 2015, we established a tree-diversity experiment by growing tree communities with varying species richness levels (one, two, or four species) and either with AM or EM tree species or a combination of both. We investigated basal area and annual basal area increment from 2015 to 2020 as proxies for community productivity. We found significant positive relationships between tree species richness and community productivity, which strengthened over time. Further, AM and EM tree species differently influenced productivity; however, there was no overyielding when AM and EM trees grew together. EM tree communities were characterized by low productivity in the beginning but an increase of increment over time and showed overall strong biodiversity effects. For AM tree communities the opposite was true. Although young trees did not benefit from the presence of the other mycorrhizal type, dissimilar mechanisms underlying BEF relationships in AM and EM trees indicate that maximizing tree and mycorrhizal diversity may increase ecosystem functioning in the long run.
Collapse
Affiliation(s)
- Peter Dietrich
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Experimental Interaction Ecology, Leipzig University, Leipzig, Germany
| | - Olga Ferlian
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Experimental Interaction Ecology, Leipzig University, Leipzig, Germany
| | - Yuanyuan Huang
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Experimental Interaction Ecology, Leipzig University, Leipzig, Germany
| | - Shan Luo
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Experimental Interaction Ecology, Leipzig University, Leipzig, Germany
| | - Julius Quosh
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Experimental Interaction Ecology, Leipzig University, Leipzig, Germany
| | - Nico Eisenhauer
- German Centre of Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, Experimental Interaction Ecology, Leipzig University, Leipzig, Germany
| |
Collapse
|
4
|
Deep Ecology, Biodiversity and Assisted Natural Regeneration of European Hemiboreal Forests. DIVERSITY 2022. [DOI: 10.3390/d14100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Climate change and the associated disturbances have disrupted the relative stability of tree species composition in hemiboreal forests. The natural ecology of forest communities, including species occurrence and composition, forest structure, and food webs, have been affected. Yet, the hemiboreal forest zone of Lithuania is the least studied in the country for climate change risks and possible management adaption techniques. This problem is further complicated by the fact that Lithuania uses a traditional centralised forest management system. Therefore, this work proposes assisted natural regeneration (ANR) of tree species as a more viable means of building hemiboreal forest resilience to cope with future climate change risks. The ANR model implies that forest management is localised in local communities, to provide opportunities for the local people to participate in forest management based on local knowledge, thereby facilitating the transition from cultural diversity to biodiversity. Further, ANR is grounded on an ethical framework—deep ecology—to provide ethical justification for the proposal to transit forest management in Lithuania from the traditional centralised segregated system to a community-driven practice. The work combines the theories of ANR, deep ecology, and hemiboreal forest knowledge systems to provide complementary information that builds on gaps in the existing literature. This study is unique in that no previous work has linked ANR and deep ecology in the context of Lithuania’s forest ecosystems.
Collapse
|
5
|
Gustienė D, Varnagirytė-Kabašinskienė I, Stakėnas V. Ground Vegetation in Pinus sylvestris Forests at Different Successional Stages following Clear Cuttings: A Case Study. PLANTS (BASEL, SWITZERLAND) 2022; 11:2651. [PMID: 36235517 PMCID: PMC9570672 DOI: 10.3390/plants11192651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/27/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The impact of intensive forestry on various components of ecosystems has become the main subject of public and scientific debate in many regions in recent years. Forest ground vegetation is considered one of the most consistent and biodiversity-rich indicators of a certain stage of successional forest development. Therefore, changes in this forest component can potentially show the risks of forest damage due to clear-cutting and recovery trends. This study was carried out to identify the ground vegetation species diversity, including species composition and cover, also ground vegetation species relations with organic layer (forest floor) and upper mineral soil parameters at the different successional stages of the Pinus sylvestris L. stand development, including 1-2-year-old clear-cuts, and 6-130 years old stands. This study identified that the herb and dwarf shrub species were more light-demanding in the 2-year-old clear-cuts, as well as in the 6-year and 10-year old P. sylvestris stands compared to the middle-aged and mature forest stands. The dominant ground vegetation species, characteristic for the Pinetum vaccinio-myrtillosum forest type, were negatively dependent on the forest floor mass; they also had negative correlations with the concentrations of total P, K, Ca, and Mg in the forest floor and upper mineral soil but had positive correlations with the soil pH values and total N. The developed regression models of the percentage cover of mosses, herbs and dwarf shrubs according to the P. sylvestris stand age highlight the stabilization of the increase in the moss cover about 30 years after clear-cutting, with no clear trend for vascular species. The herbs and dwarf shrub species were highly variable during the stand rotation due to the species-specific characteristics and random factors rather than due to the influence of stand age. In this study, relatively short-term changes in ground vegetation species composition and percentage cover were determined after clear-cutting, but an important aspect is that new ground vegetation species appeared in the open areas, creating the potential for increasing species diversity. The clear-cutting system supports different species and numbers of herbs and mosses at different stages of stand development, which potentially increases the overall vegetation species diversity of the ecosystem.
Collapse
|
6
|
Automated Delineation of Microstands in Hemiboreal Mixed Forests Using Stereo GeoEye-1 Data. REMOTE SENSING 2022. [DOI: 10.3390/rs14061471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A microstand is a small forest area with a homogeneous tree species, height, and density composition. High-spatial-resolution GeoEye-1 multispectral (MS) images and GeoEye-1-based canopy height models (CHMs) allow delineating microstands automatically. This paper studied the potential benefits of two microstand segmentation workflows: (1) our modification of JSEG and (2) generic region merging (GRM) of the Orfeo Toolbox, both intended for the microstand border refinement and automated stand volume estimation in hemiboreal forests. Our modification of JSEG uses a CHM as the primary data source for segmentation by refining the results using MS data. Meanwhile, the CHM and multispectral data fusion were achieved as multiband segmentation for the GRM workflow. The accuracy was evaluated using several sets of metrics (unsupervised, supervised direct assessment, and system-level assessment). Metrics were calculated for a regular segment grid to check the benefits compared with the simple image patches. The metrics showed very similar results for both workflows. The most successful combinations in the workflow parameters retrieved over 75 % of the boundaries selected by a human interpreter. However, the impact of data fusion and parameter combinations on stand volume estimation accuracy was minimal, causing variations of the RMSE within approximately 7 m3/ha.
Collapse
|
7
|
Fire Occurrence in Hemi-Boreal Forests: Exploring Natural and Cultural Scots Pine Fire Regimes Using Dendrochronology in Lithuania. LAND 2022. [DOI: 10.3390/land11020260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Fire is an important natural disturbance and a driver of hemi-boreal forest successional trajectories, structural complexity, and biodiversity. Understanding the historic fire regime is an important step towards sustainable forest management. Focusing on Lithuania’s hemi-boreal forests, we first mapped the potential natural fire regimes based on the relationship between site conditions, vegetation, and fire frequency using the ASIO model. The ASIO model revealed that all the fire frequency categories (Absent, Seldom, Intermittent, Often) are found in Lithuania. Scots pine forests dominated the often fire frequency category (92%). Secondly, focusing on a fire-prone forest landscape, Dzūkija, we analyzed the fire occurrence of Scots pine forest types using dendrochronological records. We sampled and cross-dated 132 Scots pine samples with fire scars from four dry forest stands (n = 92) and four peatland forest stands (n = 40), respectively. In total, the fire history analysis revealed 455 fire scars and 213 fire events during the period of 1742–2019. The Weibull median fire intervals were 2.7 years (range 1–34) for the dry forest types and 6.3 years (range 1–27) for the peatland forest types. Analysis pre- and post-1950 showed the Weibull median fire interval increased from 2.2 to 7.2 for the dry forest types but decreased from 6.2 to 5.2. for the peatland forest types. A superposed epoch analysis revealed significant precipitation fluxes prior to the fire events after 1950. Thus, the Dzūkija landscape of Lithuania has been strongly shaped by both human and naturally induced fires. The combination of theory (the ASIO model) with the examination of biological archives can be used to help guide sustainable forest management to emulate forest disturbances related to fire. As traditional forest management focusing on wood production has eliminated fire, and effectively simplified forest ecosystems, we recommend introducing educational programs to communicate the benefits and history of forest fires as well as adaptive management trials that use low-intensity prescribed burning of Scots pine stands.
Collapse
|
8
|
A Static Pulling Test Is a Suitable Method for Comparison of the Loading Resistance of Silver Birch (Betula pendula Roth.) between Urban and Peri-Urban Forests. FORESTS 2022. [DOI: 10.3390/f13010127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In urbanized areas, wind disturbances can be intensified by anthropogenic stresses under which trees may become hazardous, creating serious threats and damages to nearby targets. Therefore, species with notably lower both wood mechanical properties and compartmentalization, such as pioneers, are considered to have higher wind damage risk if subjected to unfavorable growing conditions. Eurasian aspen (Populus tremula L.) and silver birch (Betula pendula Roth.), are frequently found in both urban and peri-urban forests in Northeastern and Central parts of Europe, which strengthen the necessity for the evaluation of mechanical stability of such species. Therefore, static pulling tests were performed to compare the mechanical stability of the studied species in both urban and peri-urban forests. The loading resistance of the studied species differed, with birch being more stable than aspen, indicating aspen to be more prone to wind damage. Additionally, the mechanical stability of birch did not differ between trees growing in urban and peri-urban forests, suggesting static pulling tests are a suitable method for comparing trees from completely different growing conditions.
Collapse
|
9
|
Hernandez JO, Maldia LS, Park BB. Research Trends and Methodological Approaches of the Impacts of Windstorms on Forests in Tropical, Subtropical, and Temperate Zones: Where Are We Now and How Should Research Move Forward? PLANTS (BASEL, SWITZERLAND) 2020; 9:E1709. [PMID: 33291785 PMCID: PMC7762080 DOI: 10.3390/plants9121709] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023]
Abstract
Windstorm is one of the destructive natural disturbances, but the scale-link extent to which recurrent windstorms influenced forests ecosystems is poorly understood in a changing climate across regions. We reviewed the synergistic impacts of windstorms on forests and assessed research trends and methodological approaches from peer-reviewed articles published from 2000 to 2020 in tropical (TRF), subtropical (SUF), and temperate (TEF) forests/zones, based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Overall, the majority of the reviewed studies were conducted in TRF (i.e., 40%), intermediate in SUF (i.e., 34%), and the lowest in TEF (i.e., 26%). Among the four levels of biological organization, the species-population and community-ecosystem levels had the highest number of study cases, while the molecular-cellular-individual and landscape levels had the lowest study cases in all forest types. Most of the articles reviewed dealt largely on tree mortality/survival and regeneration/succession for TRF, tree mortality/survival and species composition/richness/diversity for SUF, and stem density, gap dynamics, and regeneration/succession for TEF. However, research on the effects of windstorms on mycorrhizal symbioses, population genetics, and physiological adaptation, element fluxes via litterfall, litter decomposition, belowground processes, biological invasion, and tree health are less common in all forest types. Further, most of the studies were conducted in permanent plots but these studies mostly used observational design, while controlled studies are obviously limited. Consequently, more observational and controlled studies are needed on the topic reviewed, particularly studies at the molecular-cellular-individual and landscape levels, to help inform forest management decision-making about developing sustainable and resilient forests amid climate change.
Collapse
Affiliation(s)
- Jonathan O. Hernandez
- Department of Environment and Forest Resources, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea;
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines Los Baños, Laguna 4031, Philippines;
| | - Lerma S.J. Maldia
- Department of Forest Biological Sciences, College of Forestry and Natural Resources, University of the Philippines Los Baños, Laguna 4031, Philippines;
| | - Byung Bae Park
- Department of Environment and Forest Resources, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea;
| |
Collapse
|