1
|
Gubaev R, Karzhaev D, Grigoreva E, Lytkin K, Safronycheva E, Volkov V, Nesterchuk V, Vetchinnikova L, Zhigunov A, Potokina E. Dissection of figured wood trait in curly birch (Betula pendula Roth var. carelica (Mercklin) Hämet-Ahti) using high-throughput genotyping. Sci Rep 2024; 14:5058. [PMID: 38424163 PMCID: PMC10904815 DOI: 10.1038/s41598-024-55404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
Curly (Karelian) birch is a special variety of Betula pendula Roth distributed in the northwestern part of Europe. Karelian birch is well-known for its valuable figured curly wood also known as "wooden marble". The genetic basis underlying curly wood formation has been debated since last century, however, there was no data about loci responsible for the curly wood trait. In the present study, we analyzed two full-sibs populations derived from experimental crosses of curly birches and segregating for the trait. RADseq genotyping was applied to reveal how many loci are involved in 'curliness' formation and to search for genetic variants associated with this trait. One single interval on chromosome 10 was detected containing possible candidate genes. InDel marker BpCW1 was suggested for the first time for marker-assisted selection of trees with curly wood at their earliest stages of development.
Collapse
Affiliation(s)
- Rim Gubaev
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg, Russia
| | - Dmitry Karzhaev
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg, Russia
- Research Laboratory, Saint Petersburg Forest Research Institute, St. Petersburg, Russia
| | - Elizaveta Grigoreva
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg, Russia
- Gregor Mendel Institute of Molecular Plant Biology, Vienna, Austria
| | - Kirill Lytkin
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg, Russia
| | - Elizaveta Safronycheva
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg, Russia
- Research Laboratory, Saint Petersburg Forest Research Institute, St. Petersburg, Russia
| | - Vladimir Volkov
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg, Russia
- Research Laboratory, Saint Petersburg Forest Research Institute, St. Petersburg, Russia
| | - Veronika Nesterchuk
- Research Laboratory, Saint Petersburg Forest Research Institute, St. Petersburg, Russia
| | - Lidiia Vetchinnikova
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg, Russia
- Forest Research Institute of Karelian Research Centre Russian Academy of Sciences, Petrozavodsk, Russia
| | - Anatoly Zhigunov
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg, Russia
| | - Elena Potokina
- Institute of Forest and Natural Resources Management, Saint Petersburg State Forest Technical University, St. Petersburg, Russia.
- Skolkovo Institute of Science and Technology, Moscow, Russia.
| |
Collapse
|
2
|
Nikerova KM, Galibina NA, Sofronova IN, Moshchenskaya YL, Korzhenevskij MA, Klimova AV, Tarelkina TV. UPBEAT1-ROS-POD- PAL System under Different Xylogenesis Scenarios in Karelian Birch (Betula pendula Roth var. carelica (Mercl.) Hämet-Ahti). Protein Pept Lett 2024; 31:375-385. [PMID: 38840406 DOI: 10.2174/0109298665291781240529044444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND We studied UPBEAT1 (UPB1) which regulated superoxide radical / hydrogen peroxide ratio together with peroxidase (POD) activity and PAL genes expression under different ways of apical meristem development during the xylem structural elements' formation in unique woody plants B. pendula var. pendula with straight-grained wood and B. pendula var. carelica with figured wood. The differentiation process predominanced in straight-grained wood (B. pendula var. pendula) or proliferation - in the figured wood. The investigation was conducted in the radial row (cambial zone - differentiating xylem - mature xylem) during the active cambial growth period. OBJECTIVE The study aimed to study the xylogenesis processes occurring in the 16-year-old straight-grained silver birch (Betula pendula Roth) and Karelian birch (Betula pendula Roth var. carelica (Mercl.) Hämet-Ahti) with figured wood. METHODS Hydrogen peroxide and superoxide radical contents and peroxidase activity were determined spectrophotometrically. Gene expression for PAL family genes and the UPBEAT1 gene was assessed using qRT-PCR. RESULTS Principal component analysis has confirmed trees with straight-grained and figured wood to be different according to UPBEAT1-ROS-POD-PAL system functioning. CONCLUSION The higher superoxide radical/hydrogen peroxide ratio in figured Karelian birch, along with UPBEAT1 transcription factor and PAL genes upregulation, distinguished it from straight-grained silver birch. This metabolic picture confirmed the shift of Karelian birch xylogenesis towards proliferation processes, accompanied by ROS and phenolic compounds' flow and POD activity.
Collapse
Affiliation(s)
- Kseniya Mihajlovna Nikerova
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science (FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| | - Nataliya Alekseevna Galibina
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science (FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| | - Irina Nikolaevna Sofronova
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science (FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| | - Yuliya Leonidovna Moshchenskaya
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science (FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| | - Maksim Anatol'evich Korzhenevskij
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science (FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| | - Anna Vladimirovna Klimova
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science (FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| | - Tatiana Vladimirovna Tarelkina
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science (FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| |
Collapse
|
3
|
Sahu SK, Liu M, Chen Y, Gui J, Fang D, Chen X, Yang T, He C, Cheng L, Yang J, Sahu DN, Li L, Wang H, Mu W, Wei J, Liu J, Zhao Y, Zhang S, Lisby M, Liu X, Xu X, Li L, Wang S, Liu H. Chromosome-scale genomes of commercial timber trees (Ochroma pyramidale, Mesua ferrea, and Tectona grandis). Sci Data 2023; 10:512. [PMID: 37537171 PMCID: PMC10400565 DOI: 10.1038/s41597-023-02420-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
Wood is the most important natural and endlessly renewable source of energy. Despite the ecological and economic importance of wood, many aspects of its formation have not yet been investigated. We performed chromosome-scale genome assemblies of three timber trees (Ochroma pyramidale, Mesua ferrea, and Tectona grandis) which exhibit different wood properties such as wood density, hardness, growth rate, and fiber cell wall thickness. The combination of 10X, stLFR, Hi-Fi sequencing and HiC data led us to assemble high-quality genomes evident by scaffold N50 length of 55.97 Mb (O. pyramidale), 22.37 Mb (M. ferrea) and 14.55 Mb (T. grandis) with >97% BUSCO completeness of the assemblies. A total of 35774, 24027, and 44813 protein-coding genes were identified in M. ferrea, T. grandis and O. pyramidale, respectively. The data generated in this study is anticipated to serve as a valuable genetic resource and will promote comparative genomic analyses, and it is of practical importance in gaining a further understanding of the wood properties in non-model woody species.
Collapse
Affiliation(s)
- Sunil Kumar Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Min Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, 150400, China
| | - Yewen Chen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Jinshan Gui
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300, Hangzhou, China
| | - Dongming Fang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Xiaoli Chen
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Ting Yang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Chengzhong He
- Southwest Forestry University, Kunming, Yunnan, 650224, China
| | - Le Cheng
- BGI Research, Kunming, Yunnan, 650106, China
| | - Jinlong Yang
- BGI Research, Kunming, Yunnan, 650106, China
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, China
| | - Durgesh Nandini Sahu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Linzhou Li
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Hongli Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Weixue Mu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Jinpu Wei
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Jie Liu
- Forestry Bureau of Ruili, Yunnan Dehong, Ruili, 678600, China
| | | | - Shouzhou Zhang
- Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen, Chinese Academy of Sciences, Shenzhen, 518004, China
| | - Michael Lisby
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xin Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
| | - Xun Xu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Sibo Wang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China.
| | - Huan Liu
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, 518083, China.
- BGI Life Science Joint Research Center, Northeast Forestry University, Harbin, 150400, China.
| |
Collapse
|
4
|
Nikerova KM, Galibina NA, Sinkevich SM, Sofronova IN, Borodina MN, Moshchenskaya YL, Tarelkina TV, Klimova AV. Biochemical Aspects of the Spiral Grain Formation in Scots Pine ( Pinus Sylvestris L.) Wood. Some Differences and Similarities with Biochemical Indicators of Abnormal Xylogenesis in Karelian Birch ( Betula Pendula Roth Var. Carelica (Mercl.) Hämet-Ahti). Protein Pept Lett 2023; 30:763-776. [PMID: 37622712 DOI: 10.2174/0929866530666230824101841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND AOS enzymes can be biochemical indicators of abnormal xylogenesis in Scots pine, and this mechanism has similar features with the metabolic base of abnormal xylogenesis in Karelian birch. OBJECTIVE AOS enzymes' activity in 150-300-year-old Pinus sylvestris L. wood with straight-- grained wood and right-twisted spiral-grained wood, expressed in varying degrees (5-20 angle), grew in three sample plots in lingonberry and blueberry pine forest stands of different ages (100-300 years) in the middle taiga subzone in the Republic of Karelia. METHODS Plant tissues were ground in liquid nitrogen in a uniform mass and homogenized at 4°C in the buffer containing 50 mM HEPES (pH 7.5), 1 mM EDTA, 1 mM EGTA, 3 mM DTT, 5 mM MgCl2 and 0.5 mM PMSF. After 20 min extraction, the homogenate was centrifuged at 10000 g for 20 min (MPW-351R, Poland). The sediment was washed in the buffer thrice. The pooled supernatant and sediment were dialyzed at 4°C for 18-20 h against a tenfold diluted homogenization buffer. The enzymes' activity was determined spectrophotometrically (Spectrophotometer SF-2000, OKB Spectr, Russia). Proteins in the extracts were quantified by the method of Bradford. RESULTS The study showed that the activity of SS, ApInv, CAT, POD and PPO in xylem and PPO in phloem were biochemical indicators for abnormal wood of P. sylvestris. We noticed an increase in sucrose metabolism in the apoplast and the activity of POD and PPO under spiral-grain wood formation like under figured wood formation earlier. We assume that the alternative pathway of sucrose metabolism (an indicator of abnormal xylogenesis in B. pendula var. carelica plants) that lead to restructuring of AOS enzymes have the same biochemical regularities in the spiral-grain wood formation in P. sylvestris. CONCLUSION The study showed that the differences in the AOS enzyme's activity in P. sylvestris during the formation of straight-grained and spiral-grained wood were revealed for the first time. The increased CAT, POD and PPO activities in xylem with a decrease in SS and an increase in Ap- Inv during spiral-grained wood formation can be biochemical markers of these structural anomalies. Metabolic regularities found in the AOS enzyme complex during spiral-grained wood formation do not contradict those found earlier during figured wood formation in B. pendula var. carelica. The identified patterns can form the base for diagnostics of P. sylvestris wood quality in forest seed plantations and in their natural growth, which is necessary both for fundamental science and in various industry areas while high-quality material harvesting.
Collapse
Affiliation(s)
- Kseniya Mihajlovna Nikerova
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science(FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| | - Natalia Alekseevna Galibina
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science(FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| | - Sergey Mihajlovich Sinkevich
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science(FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| | - Irina Nikolaevna Sofronova
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science(FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| | - Marina Nikolaevna Borodina
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science(FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| | - Yuliya Leonidovna Moshchenskaya
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science(FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| | - Tatiana Vladimirovna Tarelkina
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science(FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| | - Anna Vladimirovna Klimova
- Forest Research Institute of the Karelian Research Centre of the Russian Academy of Science(FRI KarRC RAS), 11 Pushkinskaya St., 185910 Petrozavodsk, Karelia, Russia
| |
Collapse
|