1
|
Vasistha P, Singh PP, Srivastava D, Johny L, Shukla S. Effector proteins of Funneliformis mosseae BR221: unravelling plant-fungal interactions through reference-based transcriptome analysis, in vitro validation, and protein‒protein docking studies. BMC Genomics 2025; 26:42. [PMID: 39819563 PMCID: PMC11736945 DOI: 10.1186/s12864-024-10918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/17/2024] [Indexed: 01/19/2025] Open
Abstract
BACKGROUND Arbuscular mycorrhizal (AM) fungi form a highly adaptable and versatile group of fungi found in natural and man-managed ecosystems. Effector secreted by AM fungi influence symbiotic relationship by modifying host cells, suppressing host defense and promoting infection to derive nutrients from the host. Here, we conducted a reference-based transcriptome sequencing of Funneliformis mosseae BR221 to enhance understanding on the molecular machinery involved in the establishment of interaction between host and AM fungi. RESULTS A total of 163 effector proteins were identified in F. mosseae isolate BR221, of these, 79.14% are extracellular effectors and 5.5% are predicted cytoplasmic effectors. In silico prediction using a pathogen-host interaction database suggested four of the 163 effectors could be crucial in establishing AM fungi-host interactions. Protein-protein docking analysis revealed interactions between these potential effectors and plant proteins known to be differentially expressed during mycorrhizal association, such as defensins, aquaporins, and PTO proteins. These interactions are multifaceted in modulating host physiological and defense mechanisms, including immune suppression, hydration, nutrient uptake, and oxidative stress modulation. CONCLUSIONS These findings of the current study provide a foundational understanding of fungal-host molecular interactions and open avenues for exploring pathways influenced by these effectors. By deepening our knowledge of these mechanisms, the use of AM fungi in biofertilizer formulations can be refined by selecting strains with specific effectors that enhance nutrient uptake, improve drought and disease resistance, and tailor the fungi's symbiotic efficiency to different crops or environmental conditions, thus contributing to more targeted and sustainable agricultural practices.
Collapse
Affiliation(s)
- Pratima Vasistha
- Deakin Nanobiotechnology Centre, TERI, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurgaon Faridabad Road, Gurgaon, Haryana, 122001, India
| | - Pushplata Prasad Singh
- Deakin Nanobiotechnology Centre, TERI, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurgaon Faridabad Road, Gurgaon, Haryana, 122001, India.
| | - Divya Srivastava
- Deakin Nanobiotechnology Centre, TERI, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurgaon Faridabad Road, Gurgaon, Haryana, 122001, India
| | - Leena Johny
- Deakin Nanobiotechnology Centre, TERI, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurgaon Faridabad Road, Gurgaon, Haryana, 122001, India
| | - Sadhana Shukla
- Deakin Nanobiotechnology Centre, TERI, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurgaon Faridabad Road, Gurgaon, Haryana, 122001, India
| |
Collapse
|
2
|
Hewezi T. Phytopathogens Reprogram Host Alternative mRNA Splicing. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:173-192. [PMID: 38691872 DOI: 10.1146/annurev-phyto-121423-041908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Alternative splicing (AS) is an evolutionarily conserved cellular process in eukaryotes in which multiple messenger RNA (mRNA) transcripts are produced from a single gene. The concept that AS adds to transcriptome complexity and proteome diversity introduces a new perspective for understanding how phytopathogen-induced alterations in host AS cause diseases. Recently, it has been recognized that AS represents an integral component of the plant immune system during parasitic, commensalistic, and symbiotic interactions. Here, I provide an overview of recent progress detailing the reprogramming of plant AS by phytopathogens and the functional implications on disease phenotypes. Additionally, I discuss the vital function of AS of immune receptors in regulating plant immunity and how phytopathogens use effector proteins to target key components of the splicing machinery and exploit alternatively spliced variants of immune regulators to negate defense responses. Finally, the functional association between AS and nonsense-mediated mRNA decay in the context of plant-pathogen interface is recapitulated.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee, USA;
| |
Collapse
|
3
|
Betz R, Heidt S, Figueira-Galán D, Hartmann M, Langner T, Requena N. Alternative splicing regulation in plants by SP7-like effectors from symbiotic arbuscular mycorrhizal fungi. Nat Commun 2024; 15:7107. [PMID: 39160162 PMCID: PMC11333574 DOI: 10.1038/s41467-024-51512-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
Most plants in natural ecosystems associate with arbuscular mycorrhizal (AM) fungi to survive soil nutrient limitations. To engage in symbiosis, AM fungi secrete effector molecules that, similar to pathogenic effectors, reprogram plant cells. Here we show that the Glomeromycotina-specific SP7 effector family impacts on the alternative splicing program of their hosts. SP7-like effectors localize at nuclear condensates and interact with the plant mRNA processing machinery, most prominently with the splicing factor SR45 and the core splicing proteins U1-70K and U2AF35. Ectopic expression of these effectors in the crop plant potato and in Arabidopsis induced developmental changes that paralleled to the alternative splicing modulation of a specific subset of genes. We propose that SP7-like proteins act as negative regulators of SR45 to modulate the fate of specific mRNAs in arbuscule-containing cells. Unraveling the communication mechanisms between symbiotic fungi and their host plants will help to identify targets to improve plant nutrition.
Collapse
Affiliation(s)
- Ruben Betz
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Sven Heidt
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - David Figueira-Galán
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Meike Hartmann
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany
| | - Thorsten Langner
- Max Planck Institute for Biology Tübingen - Max-Planck-Ring 5, Tübingen, Germany
| | - Natalia Requena
- Joseph Kölreuter Institute for Plant Sciences. Molecular Phytopathology Department, Karlsruhe Institute of Technology (KIT) - South Campus, Fritz-Haber-Weg 4, Karlsruhe, Germany.
| |
Collapse
|
4
|
He Y, Zhu L, Dong X, Li A, Xu S, Wang L, Shao Y. Metabolic Regulation of Two pksCT Gene Transcripts in Monascus ruber Impacts Citrinin Biosynthesis. J Fungi (Basel) 2023; 9:1174. [PMID: 38132775 PMCID: PMC10745002 DOI: 10.3390/jof9121174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
Citrinin (CIT), a secondary metabolite produced by the filamentous fungi Monascus species, exhibits nephrotoxic, hepatotoxic, and carcinogenic effects in mammals, remarkably restricting the utilization of Monascus-derived products. CIT synthesis is mediated through the pksCT gene and modified by multiple genetic factors. Here, the regulatory effects of two pksCT transcripts, pksCTα, and pksCTβ, generated via pre-mRNA alternative splicing (AS), were investigated using hairpin RNA (ihpRNA) interference, and their impact on CIT biosynthesis and the underlying mechanisms were assessed through chemical biology and transcriptome analyses. The CIT yield in ihpRNA-pksCTα and ihpRNA-pksCT (α + β) transformants decreased from 7.2 μg/mL in the wild-type strain to 3.8 μg/mL and 0.08 μg/mL, respectively. Notably, several genes in the CIT biosynthetic gene cluster, specifically mrl3, mrl5, mrr1, and mrr5 in the ihpRNA-pksCT (α + β) transformant, were downregulated. Transcriptome results revealed that silencing pksCT has a great impact on carbohydrate metabolism, amino acid metabolism, lipid metabolism, and AS events. The key enzymes in the citrate cycle (TCA cycle) and glycolysis were significantly inhibited in the transformants, leading to a decrease in the production of biosynthetic precursors, such as acetyl-coenzyme-A (acetyl-coA) and malonyl-coenzyme-A (malonyl-coA). Furthermore, the reduction of CIT has a regulatory effect on lipid metabolism via redirecting acetyl-coA from CIT biosynthesis towards lipid biosynthesis. These findings offer insights into the mechanisms underlying CIT biosynthesis and AS in Monascus, thus providing a foundation for future research.
Collapse
Affiliation(s)
- Yi He
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.Z.); (X.D.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (A.L.); (S.X.)
| | - Lisha Zhu
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.Z.); (X.D.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (A.L.); (S.X.)
| | - Xingxing Dong
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.Z.); (X.D.)
| | - Aoran Li
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (A.L.); (S.X.)
| | - Suyin Xu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (A.L.); (S.X.)
| | - Liling Wang
- College of Food Science and Engineering, Tarim University, Alar 843300, China;
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
5
|
Dwivedi SL, Quiroz LF, Reddy ASN, Spillane C, Ortiz R. Alternative Splicing Variation: Accessing and Exploiting in Crop Improvement Programs. Int J Mol Sci 2023; 24:15205. [PMID: 37894886 PMCID: PMC10607462 DOI: 10.3390/ijms242015205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Alternative splicing (AS) is a gene regulatory mechanism modulating gene expression in multiple ways. AS is prevalent in all eukaryotes including plants. AS generates two or more mRNAs from the precursor mRNA (pre-mRNA) to regulate transcriptome complexity and proteome diversity. Advances in next-generation sequencing, omics technology, bioinformatics tools, and computational methods provide new opportunities to quantify and visualize AS-based quantitative trait variation associated with plant growth, development, reproduction, and stress tolerance. Domestication, polyploidization, and environmental perturbation may evolve novel splicing variants associated with agronomically beneficial traits. To date, pre-mRNAs from many genes are spliced into multiple transcripts that cause phenotypic variation for complex traits, both in model plant Arabidopsis and field crops. Cataloguing and exploiting such variation may provide new paths to enhance climate resilience, resource-use efficiency, productivity, and nutritional quality of staple food crops. This review provides insights into AS variation alongside a gene expression analysis to select for novel phenotypic diversity for use in breeding programs. AS contributes to heterosis, enhances plant symbiosis (mycorrhiza and rhizobium), and provides a mechanistic link between the core clock genes and diverse environmental clues.
Collapse
Affiliation(s)
| | - Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Anireddy S N Reddy
- Department of Biology and Program in Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23053 Alnarp, SE, Sweden
| |
Collapse
|
6
|
Aita R, Chen L, Verzi M. Evaluating Performance of IsoformSwitchAnalyzeR and mRNA Isoform Switching in Small Intestine Epithelial Differentiation. GASTRO HEP ADVANCES 2023; 2:1077-1081. [PMID: 38094226 PMCID: PMC10718563 DOI: 10.1016/j.gastha.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/04/2023] [Indexed: 12/17/2023]
Affiliation(s)
- R. Aita
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Division of Environmental & Population Health Biosciences, EOHSI, New Brunswick, New Jersey
| | - L. Chen
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Division of Environmental & Population Health Biosciences, EOHSI, New Brunswick, New Jersey
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - M.P. Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Rutgers Center for Lipid Research, New Jersey Institute for Food, Nutrition & Health, Division of Environmental & Population Health Biosciences, EOHSI, New Brunswick, New Jersey
| |
Collapse
|
7
|
Domingo G, Vannini C, Bracale M, Bonfante P. Proteomics as a tool to decipher plant responses in arbuscular mycorrhizal interactions: a meta-analysis. Proteomics 2023; 23:e2200108. [PMID: 36571480 DOI: 10.1002/pmic.202200108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
The beneficial symbiosis between plants and arbuscular mycorrhizal (AM) fungi leads to a deep reprogramming of plant metabolism, involving the regulation of several molecular mechanisms, many of which are poorly characterized. In this regard, proteomics is a powerful tool to explore changes related to plant-microbe interactions. This study provides a comprehensive proteomic meta-analysis conducted on AM-modulated proteins at local (roots) and systemic (shoots/leaves) level. The analysis was implemented by an in-depth study of root membrane-associated proteins and by a comparison with a transcriptome meta-analysis. A total of 4262 differentially abundant proteins were retrieved and, to identify the most relevant AM-regulated processes, a range of bioinformatic studies were conducted, including functional enrichment and protein-protein interaction network analysis. In addition to several protein transporters which are present in higher amounts in AM plants, and which are expected due to the well-known enhancement of AM-induced mineral uptake, our analysis revealed some novel traits. We detected a massive systemic reprogramming of translation with a central role played by the ribosomal translational apparatus. On one hand, these new protein-synthesis efforts well support the root cellular re-organization required by the fungal penetration, and on the other they have a systemic impact on primary metabolism.
Collapse
Affiliation(s)
- Guido Domingo
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | - Candida Vannini
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | - Marcella Bracale
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|
8
|
Zhong X, Li M, Zhang M, Feng Y, Zhang H, Tian H. Genome-wide analysis of the laccase gene family in wheat and relationship with arbuscular mycorrhizal colonization. PLANTA 2022; 257:15. [PMID: 36528718 DOI: 10.1007/s00425-022-04048-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
We identified 156 laccase genes belonging to 11 subfamilies in the wheat genome, and the natural variation of laccase genes significantly affected the development of wheat-arbuscular mycorrhizal symbiosis. Laccases (LACs) have a variety of functions in plant lignification, cell elongation and stress responses. This study aimed to reveal the phylogeny, chromosomal spatial distribution, coexpression and evolution of LAC genes in the wheat genome and to investigate the possible roles of LAC genes during arbuscular mycorrhizal (AM) symbiosis. The genomic characteristics of LAC genes were analyzed by using bioinformatics analysis methods, and the polymorphisms of LAC genes were analyzed by using a diverse wheat panel composed of 289 wheat cultivars. We identified 156 LAC genes belonging to 11 subfamilies in the wheat genome, and segmental duplication dominated the amplification of the LAC gene family in the wheat genome. LACs are dominantly located in the R2 region of wheat chromosomes. Some LACs are collinear with the characterized LACs in Arabidopsis thaliana or rice. A number of genes encoding transcription factors, kinases, and phosphatases were coexpressed with LAC genes in wheat. TaLACs may be potential targets for some miRNAs. Most TaLACs are mainly expressed in the roots and stems of plants. The expression of TaLACs could be regulated by the inoculation of Fusarium graminearum or AM fungi. The polymorphisms of TaLACs mainly accumulate by random drift instead of by selection. Through candidate gene association analysis, we found that the natural variations in TaLACs significantly affected root colonization by AM fungi. The present study provides useful information for further study of the biological functions of LAC genes in wheat, especially the roles of LAC genes during the development of AM symbiosis.
Collapse
Affiliation(s)
- Xiong Zhong
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mengjiao Li
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingming Zhang
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Feng
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Zhang
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hui Tian
- Key Laboratory of Plant Nutrition and Agri-Environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
9
|
Zhou T, He Y, Zeng X, Cai B, Qu S, Wang S. Comparative Analysis of Alternative Splicing in Two Contrasting Apple Cultivars Defense against Alternaria alternata Apple Pathotype Infection. Int J Mol Sci 2022; 23:ijms232214202. [PMID: 36430679 PMCID: PMC9693243 DOI: 10.3390/ijms232214202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Alternaria blotch disease, caused by the Alternaria alternata apple pathotype (A. alternata AP), is one of the most serious fungal diseases in apples. Alternative splicing (AS), one of the pivotal post-transcriptional regulatory mechanisms, plays essential roles in various disease resistance responses. Here, we performed RNA-Seq for two apple cultivars (resistant cultivar 'Jonathan' (J) and susceptible cultivar 'Starking Delicious' (SD)) infected by A. alternata AP to further investigate their AS divergence. In total, 1454, 1780, 1367 and 1698 specifically regulated differential alternative splicing (DAS) events were detected in J36, J72, SD36 and SD72 groups, respectively. Retained intron (RI) was the dominant AS pattern. Conformably, 642, 764, 585 and 742 uniquely regulated differentially spliced genes (DSGs) were found during A. alternata AP infection. Comparative analysis of AS genes in differential splicing and expression levels suggested that only a small proportion of DSGs overlapped with differentially expressed genes (DEGs). Gene ontology (GO) enrichment analysis demonstrated that the DSGs were significantly enriched at multiple levels of gene expression regulation. Briefly, the specific AS was triggered in apple defense against A. alternata AP. Therefore, this study facilitates our understanding on the roles of AS regulation in response to A. alternata AP infection in apples.
Collapse
|
10
|
Sambles C, Suarez-Fernandez M, Lopez-Moya F, Lopez-Llorca LV, Studholme DJ. Chitosan induces differential transcript usage of chitosanase 3 encoding gene (csn3) in the biocontrol fungus Pochonia chlamydosporia 123. BMC Genomics 2022; 23:101. [PMID: 35123406 PMCID: PMC8817618 DOI: 10.1186/s12864-021-08232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022] Open
Abstract
Background Pochonia chlamydosporia is an endophytic fungus used for nematode biocontrol that employs its cellular and molecular machinery to degrade the nematode egg-shell. Chitosanases, among other enzymes, are involved in this process. In this study, we improve the genome sequence assembly of P. chlamydosporia 123, by utilizing long Pacific Biosciences (PacBio) sequence reads. Combining this improved genome assembly with previous RNA-seq data revealed alternative isoforms of a chitosanase in the presence of chitosan. This study could open new insights into understanding fungal resistance to chitosan and root-knot nematode (RKN) egg infection processes. Results The P. chlamydosporia 123 genome sequence assembly has been updated using long-read PacBio sequencing and now includes 12,810 predicted protein-coding genes. Compared with the previous assembly based on short reads, there are 701 newly annotated genes, and 69 previous genes are now split. Eight of the new genes were differentially expressed in fungus interactions with Meloidogyne javanica eggs or chitosan. A survey of the RNA-seq data revealed alternative splicing in the csn3 gene that encodes a chitosanase, with four putative splicing variants: csn3_v1, csn3_v2, csn3_v3 and csn3_v4. When P. chlamydosporia is treated with 0.1 mg·mL− 1 chitosan for 4 days, csn3 is expressed 10-fold compared with untreated controls. Furthermore, the relative abundances of each of the four transcripts are different in chitosan treatment compared with controls. In controls, the abundances of each transcript are nil, 32, 55, and 12% for isoforms csn3_v1, csn3_v2, csn3_v3 and csn3_v4 respectively. Conversely, in chitosan-treated P. chlamydosporia, the abundances are respectively 80, 15%, 2—3%, 2—3%. Since isoform csn3_v1 is expressed with chitosan only, the putatively encoded enzyme is probably induced and likely important for chitosan degradation. Conclusions Alternative splicing events have been discovered and described in the chitosanase 3 encoding gene from P. chlamydosporia 123. Gene csn3 takes part in RKN parasitism process and chitosan enhances its expression. The isoform csn3_v1 would be related to the degradation of this polymer in bulk form, while other isoforms may be related to the degradation of chitosan in the nematode egg-shell. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08232-7.
Collapse
|