1
|
Tripathi G, Dutta S, Mishra A, Basu S, Gupta V, Kamaraj C. Nanomaterials impact in phytohormone signaling networks of plants - A critical review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 352:112373. [PMID: 39725164 DOI: 10.1016/j.plantsci.2024.112373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/07/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Nanotechnology offers a transformative approach to augment plant growth and crop productivity under abiotic and biotic stress conditions. Nanomaterials interact with key phytohormones, triggering the synthesis of stress-associated metabolites, activating antioxidant defense mechanisms, and modulating gene expression networks that regulate diverse physiological, biochemical, and molecular processes within plant systems. This review critically examines the impact of nanoparticles on both conventional and genetically modified crops, focusing on their role in nutrient delivery systems and the modulation of plant cellular machinery. Nanoparticle-induced reactive oxygen species (ROS) generation plays a central role in altering secondary metabolite biosynthesis, highlighting their function as potent elicitors and stimulants in plant systems. The review underscores the significant contribution of nanoparticles in enhancing stress resilience through the modulation of phytohormonal signaling pathways, offering novel insights into their potential for improving crop health and productivity under environmental stressors.
Collapse
Affiliation(s)
- Garima Tripathi
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Road, Tamil Nadu 632014, India; Department of Biomedical Engineering, School of Bioscience and Engineering, Jadavpur University, Kolkata 700032, India
| | - Shrestha Dutta
- Pharmaceutical Science and engineering, Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India
| | - Anamika Mishra
- Department of Bio-Sciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Tiruvalam Road, Tamil Nadu 632014, India
| | - Soumyadeep Basu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, United Kingdom
| | - Vishesh Gupta
- Pharmaceutical Science and engineering, Department of Chemistry and Chemical Biology, Indian Institute of Technology (ISM), Dhanbad, Jharkhand 826004, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine, Directorate of Research, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
2
|
Abinaya K, Raja K, Raja K, Sathya Moorthy P, Senthil A, Chandrakumar K. Enhancing drought tolerance in blackgram (Vigna mungo L. Hepper) through physiological and biochemical modulation by peanut shell carbon dots. Sci Rep 2025; 15:5475. [PMID: 39953076 PMCID: PMC11828879 DOI: 10.1038/s41598-025-89610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
Among the abiotic factors that causes threat to crop production, drought is one of the foremost constraints in the changing climatic era. Hence, a study was conducted to mitigate the effect of drought stress in blackgram with the peanut shell carbon dots (PNS-CDs) as seed priming and foliar spray agent. Blackgram seeds were primed with PNS-CDs at 200 ppm for 3 h and plants were sprayed with PNS-CDs at 50 ppm on 30th and 45th DAS under drought stress conditions (30%, 50% and 75% WHC). The imposed treatments included dry seeds (control), water sprayed plants, seed priming with PNS-CDs, foliar spray with PNS-CDs and combination of both. The results demarcate the exemplary performance of plants when given with combined application of priming (200 ppm) and foliar spray (50 ppm) with PNS-CDs in terms of its growth and yield. Further, an increased activity of catalase (12%), peroxidase (12%), superoxide dismutase (22%), glutathione reductase (60%), ascorbate peroxidase (55%), H2O2 scavenging (32%) and proline (35%) were noticed over dry seeds, which confirmed the antioxidant defense mechanism offered by PNS-CDs. In addition, the percentage increase in photosynthetic parameters like total chlorophyll (44%), total soluble protein (54%), photosynthetic rate (89%), stomatal conductance (40%), internal CO2 concentration (74%) and chlorophyll stability index (51%) confirmed the role of PNS-CDs as photosynthesis enhancer under drought stress, which resulted in enhanced stress tolerance, plant growth and yield. Thus, it was found that priming blackgram seeds with 200 ppm PNS-CDs for 3 h followed by foliar spray with 50 ppm on 30 and 45th DAS could serve as a sustainable alternative to chemical inputs, ensuring better crop productivity and stress tolerance in water-limited environments. Further, future research could explore the molecular mechanisms underlying the stress tolerance offered by PNS-CDs. In addition, the application of PNS-CDs to different crops, biotic and abiotic stress conditions will also pave the way for broader agricultural sustainability in an eco-friendly approach.
Collapse
Affiliation(s)
- Kanthavel Abinaya
- Department of Seed Science and Technology, Seed Centre, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Karuppannan Raja
- Department of Seed Science and Technology, Seed Centre, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| | - Kalimuthu Raja
- Centre for Agricultural Nanotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Ponnuraj Sathya Moorthy
- Department of Basic Engineering and Applied Sciences, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Kumulur, 621712, India
| | - Alagarswamy Senthil
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Kalichamy Chandrakumar
- Department of Plant Molecular Biology and Bioinformatics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| |
Collapse
|
3
|
Verma A, Choudhary R, Singh VJ, Kachhwaha S, Kothari SL, Jain R. Assessment of the effect of multi-walled carbon nanotubes (-OH functionalized) on growth characteristics and biochemical profile of Brassica juncea (L.) Czern. & Coss. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1345-1360. [PMID: 39725846 DOI: 10.1007/s11356-024-35681-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
This study investigated the effect of various levels of OH-MWCNTs mediated seed priming on germination, growth, and biochemical responses of Indian mustard (Brassica juncea (L.) Czern. & Coss.). Germination efficiency declined significantly up to 33.8% with increasing concentration of OH-MWCNT; however, other growth characteristics including seedling length and weight exhibited a substantial increase of up to 61.6% and 142%, respectively, at moderate levels (≤ 100 µg mL-1). Higher doses (250 µg mL-1, 500 µg mL-1) of OH-MWCNT exhibited a toxic effect on all growth parameters resulting in ~ 20% and 55% decline in seedling length and biomass, respectively. Similar trend was recorded in chlorophyll content, and maximum total chlorophyll content (13 ± 3 mg/g FW) was noted at 100 µg/mL OH-MWCNT. Antioxidant enzyme activities including catalase (CAT), guaiacol peroxidase (GPX), polyphenol oxidase (PPO), and superoxide dismutase (SOD) also exhibited similar pattern such that all activities were maximum at 100 µgmL-1 in both shoots and roots and were significantly higher in shoots than in roots. Total phenol content and DPPH activity were also maximum at 100 µgmL-1, and both parameters were comparatively higher in roots than in shoots. GC-MS analysis revealed that lipids constituted the majority of the proportion of secondary metabolites detected in non-polar extracts of both shoots and roots. Further, correlation analysis established a significant correlation between various growth, physiological, and biochemical parameters. These findings therefore indicated that moderate levels of OH-MWCNT concentrations can enhance B. juncea growth and biochemical responses, which in turn promotes biosynthesis of valuable antioxidant compounds. This study highlighs the potential of MWCNTs as innovative growth enhancers, wherein the higher concentrations may have detrimental effects, therefore, emphasizing the need for careful management of OH-MWCNT usage for agricultural purposes.
Collapse
Affiliation(s)
- Aman Verma
- Department of Biosciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India
| | - Rajpal Choudhary
- Department of Biosciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India
| | - Vikram Jeet Singh
- Department of Biosciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India
| | - Sumita Kachhwaha
- Department of Botany, University of Rajasthan, Jaipur, 303004, Rajasthan, India
| | - Shanker Lal Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, Rajasthan, India
| | - Rohit Jain
- Department of Biosciences, Manipal University Jaipur, Jaipur, 303007, Rajasthan, India.
| |
Collapse
|
4
|
Hernandez LE, Ruiz JM, Espinosa F, Alvarez-Fernandez A, Carvajal M. Plant nutrition challenges for a sustainable agriculture of the future. PHYSIOLOGIA PLANTARUM 2024; 176:e70018. [PMID: 39691080 DOI: 10.1111/ppl.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024]
Abstract
This article offers a comprehensive review of sustainable plant nutrition concepts, examining a multitude of cutting-edge techniques that are revolutionizing the modern area. The review copes with the crucial role of biostimulants as products that stimulate plant nutrition processes, including their potential for biofertilization, followed by an exploration of the significance of micronutrients in plant health and growth. We then delve into strategies for enhancing plants' tolerance to mineral nutrient contaminants and the promising realm of biofortification to increase the essential nutrients necessary for human health. Furthermore, this work also provides a concise overview of the burgeoning field of nanotechnologies in fertilization, while the integration of circular economy principles underscores the importance of sustainable resource management. Then, with examined the interrelation between micronutrients. We conclude with the future challenges and opportunities that lie ahead in the pursuit of more sustainable and resilient plant systems.
Collapse
Affiliation(s)
- Luis E Hernandez
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Madrid, Spain
| | - Juan M Ruiz
- Department of Plant Physiology, Faculty of Sciences, University of Granada, Granada, Spain
| | - Francisco Espinosa
- Plant Biology, Ecology and Earth Sciences Department, Extremadura University, Badajoz, Spain
| | | | - Micaela Carvajal
- Aquaporins Group. Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS, CSIC), Campus Universitario de Espinardo, Murcia, Spain
| |
Collapse
|
5
|
Huang J, Huang M, Guan Z, Chen L, Chen J, Lv L, Liu M. Phytotoxicity of HNTs to rice (Oryza sativa L.): Effects on rice growth and development. CHEMOSPHERE 2024; 368:143735. [PMID: 39536831 DOI: 10.1016/j.chemosphere.2024.143735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/07/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
The phytotoxicity of halloysite nanotubes (HNTs) to rice (Oryza sativa L.) was evaluated at several stages from germination, seedling growth to spike setting, and the seedling stage was selected to study the effect of HNTs on the growth of rice. Rice was cultured using different concentrations of HNTs dispersions and a blank control group was cultured with deionized water. It was found that HNTs did not affect the germination of rice seeds, and at the seedling stage, the low concentration of HNTs dispersion (0.1 mg mL-1) promoted the growth of rice. This significantly increased the biomass and root system of rice seedlings and also promoted the development of stems and leaves of rice seedlings. However, high concentration of HNTs dispersion (100 mg mL-1) had an inhibitory effect on rice growth, resulting in a significant decrease in rice biomass, causing oxidative damage (increase in H2O2 content and malondialdehyde content, and disruption of cell membrane permeability), and causing a decrease in chlorophyll content in rice. The rice seedlings treated with HNTs were transplanted into the soil, and it was found that all the rice could grow healthily. The growth trend was consistent with the seedling stage, and all groups of rice were able to produce spikes, which indicated that the effect of HNTs on rice was slight. In total, this work displayed the toxicity of HNTs to rice, which lays the foundation for the application of HNTs in agricultural field.
Collapse
Affiliation(s)
- Jiawei Huang
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Ming Huang
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - ZiYing Guan
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Science, Guangdong Guangzhou, 510640, China
| | - Linhong Chen
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Jie Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Science, Guangdong Guangzhou, 510640, China.
| | - Lihua Lv
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Science, Guangdong Guangzhou, 510640, China
| | - Mingxian Liu
- Department of Materials Science and Engineering, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China.
| |
Collapse
|
6
|
Wu H, Du PR, Miao XR, Hou RQ, Li SN, Zeeshan M, Liu JC, Huang SQ, Cheng DM, Xu HH, Zhang ZX. O-Carboxymethyl chitosan nanoparticles: A novel approach to enhance water stress tolerance in maize seedlings. Int J Biol Macromol 2024; 277:134459. [PMID: 39111471 DOI: 10.1016/j.ijbiomac.2024.134459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/11/2024]
Abstract
Water stress, a significant abiotic stressor, significantly hampers crop growth and yield, posing threat to food security. Despite the promising potential of nanoparticles (NPs) in enhancing plant stress tolerance, the precise mechanisms underlying the alleviation of water stress using O-Carboxymethyl chitosan nanoparticles (O-CMC-NPs) in maize remain elusive. In this study, we synthesized O-CMC-NPs and delved into their capacity to mitigate water stress (waterlogging and drought) in maize seedlings. Structural characterization revealed spherical O-CMC-NPs with a size of approximately 200 nm. These NPs accumulated near the seed embryo and root tip, resulting in a substantial increase in fresh and dry weights. The application of O-CMC-NPs to water-stressed maize seedlings remarkedly elevated the chlorophyll content and activity of various antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and polyphenol oxidase (PPO). The malondialdehyde (MDA) content was significantly reduced compared to the untreated control. Additionally, the expression of stress-responsive genes, such as ZmSOD, ZmCAT, ZmPOD, ZmTIFY, ZmACO, ZmPYL2, ZmNF-YC12, and ZmEREB180, were significantly upregulated in the O-CMC-NPs treated seedlings. These findings unveil the novel role of O-CMC-NPs in enhancing plant stress tolerance, suggesting their potential application in safeguarding maize seedlings under water stress conditions and facilitating the recovery from oxidative damage.
Collapse
Affiliation(s)
- Hao Wu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Peng-Rui Du
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Ran Miao
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Rui-Quan Hou
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Sheng-Nan Li
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Zeeshan
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Jin-Cheng Liu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Su-Qing Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dong-Mei Cheng
- Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Han-Hong Xu
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China
| | - Zhi-Xiang Zhang
- National Key Laboratory of Green Pesticide, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Yang L, Zhang L, Zhang Q, Wei J, Zhao X, Zheng Z, Chen B, Xu Z. Nanopriming boost seed vigor: Deeper insights into the effect mechanism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108895. [PMID: 38976940 DOI: 10.1016/j.plaphy.2024.108895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024]
Abstract
Nanopriming, an advanced seed priming technology, is highly praised for its environmental friendliness, safety, and effectiveness in promoting sustainable agriculture. Studies have shown that nanopriming can enhance seed germination by stimulating the expression of aquaporins and increasing amylase production. By applying an appropriate concentration of nanoparticles, seeds can generate reactive oxygen species (ROS), enhance their antioxidant capacity, improve their response to oxidative stress, and enhance their tolerance to both biotic and abiotic stresses. This positive impact extends beyond the seed germination and seedling growth stages, persisting throughout the entire life cycle. This review offers a comprehensive overview of recent research progress in seed priming using various nanoparticles, while also addressing current challenges and future opportunities for sustainable agriculture.
Collapse
Affiliation(s)
- Le Yang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Laitong Zhang
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qi Zhang
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jinpeng Wei
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China; Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xueming Zhao
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zian Zheng
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Bingxian Chen
- Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| | - Zhenjiang Xu
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
8
|
Ďúranová H, Kšiňan S, Kuželová L, Šimora V, Ďurišová Ľ, Olexíková L, Ernst D, Kolenčík M. Nanoparticle-plant interactions: Physico-chemical characteristics, application strategies, and transmission electron microscopy-based ultrastructural insights, with a focus on stereological research. CHEMOSPHERE 2024; 363:142772. [PMID: 38971445 DOI: 10.1016/j.chemosphere.2024.142772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Ensuring global food security is pressing among challenges like population growth, climate change, soil degradation, and diminishing resources. Meeting the rising food demand while reducing agriculture's environmental impact requires innovative solutions. Nanotechnology, with its potential to revolutionize agriculture, offers novel approaches to these challenges. However, potential risks and regulatory aspects of nanoparticle (NP) utilization in agriculture must be considered to maximize their benefits for human health and the environment. Understanding NP-plant cell interactions is crucial for assessing risks of NP exposure and developing strategies to control NP uptake by treated plants. Insights into NP uptake mechanisms, distribution patterns, subcellular accumulation, and induced alterations in cellular architecture can be effectively drawn using transmission electron microscopy (TEM). TEM allows direct visualization of NPs within plant tissues/cells and their influence on organelles and subcellular structures at high resolution. Moreover, integrating TEM with stereological principles, which has not been previously utilized in NP-plant cell interaction assessments, provides a novel and quantitative framework to assess these interactions. Design-based stereology enhances TEM capability by enabling precise and unbiased quantification of three-dimensional structures from two-dimensional images. This combined approach offers comprehensive data on NP distribution, accumulation, and effects on cellular morphology, providing deeper insights into NP impact on plant physiology and health. This report highlights the efficient use of TEM, enhanced by stereology, in investigating diverse NP-plant tissue/cell interactions. This methodology facilitates detailed visualization of NPs and offers robust quantitative analysis, advancing our understanding of NP behavior in plant systems and their potential implications for agricultural sustainability.
Collapse
Affiliation(s)
- Hana Ďúranová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Samuel Kšiňan
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia.
| | - Lenka Kuželová
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia; Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Veronika Šimora
- AgroBioTech Research Centre, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Ľuba Ďurišová
- Institute of Plant and Environmental Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia
| | - Lucia Olexíková
- Institute of Farm Animal Genetics and Reproduction, NPPC, Research Institute for Animal Production in Nitra, Hlohovecká 2, 95141, Lužianky, Slovakia
| | - Dávid Ernst
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| | - Marek Kolenčík
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia
| |
Collapse
|
9
|
Tamindžić G, Azizbekian S, Miljaković D, Ignjatov M, Nikolić Z, Budakov D, Vasiljević S, Grahovac M. Assessment of Various Nanoprimings for Boosting Pea Germination and Early Growth in Both Optimal and Drought-Stressed Environments. PLANTS (BASEL, SWITZERLAND) 2024; 13:1547. [PMID: 38891355 PMCID: PMC11174956 DOI: 10.3390/plants13111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/18/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
One of the main climate change-related variables limiting agricultural productivity that ultimately leads to food insecurity appears to be drought. With the use of a recently discovered nanopriming technology, seeds can endure various abiotic challenges. To improve seed quality and initial growth of 8-day-old field pea seedlings (cv. NS Junior) under optimal and artificial drought (PEG-induced) laboratory conditions, this study aimed to assess the efficacy of priming with three different nanomaterials: Nanoplant Ultra (Co, Mn, Cu, Fe, Zn, Mo, and Se), Nanoplant Ca-Si (Ca, Si, B, and Fe), and Nanoplant Sulfur (S). The findings indicate that nanopriming seed treatments have a positive impact on seed quality indicators, early plant growth, and drought resilience in field pea plants established in both optimal and drought-stressed conditions. Nevertheless, all treatments showed a positive effect, but their modes of action varied. Nanoplant Ultra proved to be the most effective under optimal conditions, whereas Nanoplant Ca-Si and Nanoplant Sulfur were the most efficient under drought stress. After a field evaluation, the examined comprehensive nanomaterials may be utilized as priming agents for pea seed priming to boost seed germination, initial plant growth, and crop productivity under various environmental conditions.
Collapse
Affiliation(s)
- Gordana Tamindžić
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (D.M.); (M.I.); (Z.N.); (S.V.)
| | - Sergei Azizbekian
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 220072 Minsk, Belarus;
| | - Dragana Miljaković
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (D.M.); (M.I.); (Z.N.); (S.V.)
| | - Maja Ignjatov
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (D.M.); (M.I.); (Z.N.); (S.V.)
| | - Zorica Nikolić
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (D.M.); (M.I.); (Z.N.); (S.V.)
| | - Dragana Budakov
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (D.B.); (M.G.)
| | - Sanja Vasiljević
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, 21000 Novi Sad, Serbia; (D.M.); (M.I.); (Z.N.); (S.V.)
| | - Mila Grahovac
- Faculty of Agriculture, University of Novi Sad, 21000 Novi Sad, Serbia; (D.B.); (M.G.)
| |
Collapse
|
10
|
Wani AK, Khan Z, Sena S, Akhtar N, Alreshdi MA, Yadav KK, Alkahtani AM, Wani AW, Rahayu F, Tafakresnanto C, Latifah E, Hariyono B, Arifin Z, Eltayeb LB. Carbon nanotubes in plant dynamics: Unravelling multifaceted roles and phytotoxic implications. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108628. [PMID: 38636256 DOI: 10.1016/j.plaphy.2024.108628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/19/2024] [Accepted: 04/10/2024] [Indexed: 04/20/2024]
Abstract
Carbon nanotubes (CNTs) have emerged as a promising frontier in plant science owing to their unique physicochemical properties and versatile applications. CNTs enhance stress tolerance by improving water dynamics and nutrient uptake and activating defence mechanisms against abiotic and biotic stresses. They can be taken up by roots and translocated within the plant, impacting water retention, nutrient assimilation, and photosynthesis. CNTs have shown promise in modulating plant-microbe interactions, influencing symbiotic relationships and mitigating the detrimental effects of phytopathogens. CNTs have demonstrated the ability to modulate gene expression in plants, offering a powerful tool for targeted genetic modifications. The integration of CNTs as sensing elements in plants has opened new avenues for real-time monitoring of environmental conditions and early detection of stress-induced changes. In the realm of agrochemicals, CNTs have been explored for their potential as carriers for targeted delivery of nutrients, pesticides, and other bioactive compounds. CNTs have the potential to demonstrate phytotoxic effects, detrimentally influencing both the growth and developmental processes of plants. Phytotoxicity is characterized by induction of oxidative stress, impairment of cellular integrity, disruption of photosynthetic processes, perturbation of nutrient homeostasis, and alterations in gene expression. This review aims to provide a comprehensive overview of the current state of knowledge regarding the multifaceted roles of CNTs in plant physiology, emphasizing their potential applications and addressing the existing challenges in translating this knowledge into sustainable agricultural practices.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India.
| | - Zehra Khan
- Department of Biology, College of Science, Jazan University, 45142 Jazan, Saudi Arabia
| | - Saikat Sena
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | | | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 4620044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Abdullah M Alkahtani
- Department of Microbiology & Clinical Parasitology College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Ab Waheed Wani
- Department of Horticulture, School of Agriculture, Lovely Professional University, Jalandhar, 144411, Punjab, India
| | - Farida Rahayu
- Research Center for Genetic Engineering, National Research and Innovation Agency, Bogor, 16911, Indonesia
| | - Chendy Tafakresnanto
- Research Center for Food Crops, Research Organization for Agriculture and Food, National Research Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Evy Latifah
- Research Center for Horticulture, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Budi Hariyono
- Research Center for Estate Crops, Research Organization for Agriculture and Food, National Research Innovation Agenc (BRIN), Bogor, 16911, Indonesia
| | - Zainal Arifin
- Research Center for Horticulture, Research Organization for Agriculture and Food, National Research and Innovation Agency (BRIN), Bogor, 16911, Indonesia
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Sciences, Prince Sattam Bin AbdulAziz University-Al-Kharj, 11942, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Noori A, Hasanuzzaman M, Roychowdhury R, Sarraf M, Afzal S, Das S, Rastogi A. Silver nanoparticles in plant health: Physiological response to phytotoxicity and oxidative stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 209:108538. [PMID: 38520964 DOI: 10.1016/j.plaphy.2024.108538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024]
Abstract
Silver nanoparticles (AgNPs) have gained significant attention in various fields due to their unique properties, but their release into the environment has raised concerns about their environmental and biological impacts. Silver nanoparticles can enter plants following their exposure to roots or via stomata following foliar exposure. Upon penetrating the plant cells, AgNPs interact with cellular components and alter physiological and biochemical processes. One of the key concerns associated with plant exposure to AgNPs is the potential of these materials to induce oxidative stress. Silver nanoparticles can also suppress plant growth and development by disrupting essential plant physiological processes, such as photosynthesis, nutrient uptake, water transport, and hormonal regulation. In crop plants, these disruptions may, in turn, affect the productivity and quality of the harvested components and therefore represent a potential threat to agricultural productivity and ecosystem stability. Understanding the phytotoxic effects of AgNPs is crucial for assessing their environmental implications and guiding the development of safe nanomaterials. By delving into the phytotoxic effects of AgNPs, this review contributes to the existing knowledge regarding their environmental risks and promotes the advancement of sustainable nanotechnological practices.
Collapse
Affiliation(s)
- Azam Noori
- Department of Biology, Merrimack College, North Andover, MA, 01845, USA
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh; Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| | - Rajib Roychowdhury
- Department of Biotechnology, Visva-Bharati Central University, Santiniketan, 731235, West Bengal, India
| | - Mohammad Sarraf
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Shadma Afzal
- Motilal Nehru National Institute of Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Susmita Das
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, India
| | - Anshu Rastogi
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Poznan University of Life Sciences, Piątkowska 94, 60-649, Poznań, Poland
| |
Collapse
|
12
|
Li P, Xia Y, Song K, Liu D. The Impact of Nanomaterials on Photosynthesis and Antioxidant Mechanisms in Gramineae Plants: Research Progress and Future Prospects. PLANTS (BASEL, SWITZERLAND) 2024; 13:984. [PMID: 38611512 PMCID: PMC11013062 DOI: 10.3390/plants13070984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
As global food security faces challenges, enhancing crop yield and stress resistance becomes imperative. This study comprehensively explores the impact of nanomaterials (NMs) on Gramineae plants, with a focus on the effects of various types of nanoparticles, such as iron-based, titanium-containing, zinc, and copper nanoparticles, on plant photosynthesis, chlorophyll content, and antioxidant enzyme activity. We found that the effects of nanoparticles largely depend on their chemical properties, particle size, concentration, and the species and developmental stage of the plant. Under appropriate conditions, specific NMs can promote the root development of Gramineae plants, enhance photosynthesis, and increase chlorophyll content. Notably, iron-based and titanium-containing nanoparticles show significant effects in promoting chlorophyll synthesis and plant growth. However, the impact of nanoparticles on oxidative stress is complex. Under certain conditions, nanoparticles can enhance plants' antioxidant enzyme activity, improving their ability to withstand environmental stresses; excessive or inappropriate NMs may cause oxidative stress, affecting plant growth and development. Copper nanoparticles, in particular, exhibit this dual nature, being beneficial at low concentrations but potentially harmful at high concentrations. This study provides a theoretical basis for the future development of nanofertilizers aimed at precisely targeting Gramineae plants to enhance their antioxidant stress capacity and improve photosynthesis efficiency. We emphasize the importance of balancing the agricultural advantages of nanotechnology with environmental safety in practical applications. Future research should focus on a deeper understanding of the interaction mechanisms between more NMs and plants and explore strategies to reduce potential environmental impacts to ensure the health and sustainability of the ecosystem while enhancing the yield and quality of Gramineae crops.
Collapse
Affiliation(s)
| | | | - Kai Song
- School of Life Science, Changchun Normal University, Changchun 130032, China; (P.L.); (Y.X.)
| | - Duo Liu
- School of Life Science, Changchun Normal University, Changchun 130032, China; (P.L.); (Y.X.)
| |
Collapse
|
13
|
Tombuloglu G, Aldahnem A, Tombuloglu H, Slimani Y, Akhtar S, Hakeem KR, Almessiere MA, Baykal A, Ercan I, Manikandan A. Uptake and bioaccumulation of iron oxide nanoparticles (Fe 3O 4) in barley (Hordeum vulgare L.): effect of particle-size. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22171-22186. [PMID: 38403831 DOI: 10.1007/s11356-024-32378-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/04/2024] [Indexed: 02/27/2024]
Abstract
Root-to-shoot translocation of nanoparticles (NPs) is a matter of interest due to their possible unprecedented effects on biota. Properties of NPs, such as structure, surface charge or coating, and size, determine their uptake by cells. This study investigates the size effect of iron oxide (Fe3O4) NPs on plant uptake, translocation, and physiology. For this purpose, Fe3O4 NPs having about 10 and 100 nm in average sizes (namely NP10 and NP100) were hydroponically subjected to barley (Hordeum vulgare L.) in different doses (50, 100, and 200 mg/L) at germination (5 days) and seedling (3 weeks) stages. Results revealed that particle size does not significantly influence the seedlings' growth but improves germination. The iron content in root and leaf tissues gradually increased with increasing NP10 and NP100 concentrations, revealing their root-to-shoot translocation. This result was confirmed by vibrating sample magnetometry analysis, where the magnetic signals increased with increasing NP doses. The translocation of NPs enhanced chlorophyll and carotenoid contents, suggesting their contribution to plant pigmentation. On the other hand, catalase activity and H2O2 production were higher in NP10-treated roots compared to NP100-treated ones. Besides, confocal microscopy revealed that NP10 leads to cell membrane damages. These findings showed that Fe3O4 NPs were efficiently taken up by the roots and transported to the leaves regardless of the size factor. However, small-sized Fe3O4 NPs may be more reactive due to their size properties and may cause cell stress and membrane damage. This study may help us better understand the size effect of NPs in nanoparticle-plant interaction.
Collapse
Affiliation(s)
- Guzin Tombuloglu
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Anwar Aldahnem
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, P.O. Box 80200, Jeddah, 21589, Saudi Arabia
| | - Munirah A Almessiere
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
- Department of Physics, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Abdulhadi Baykal
- Food Engineering Department, Faculty of Engineering, Istanbul Aydin University, Istanbul, 34295, Türkiye
| | - Ismail Ercan
- Department of Electrical and Electronics Engineering, Faculty of Engineering, Duzce University, 81010, Duzce, Türkiye
| | - Ayyar Manikandan
- Department of Chemistry, Bharath Institute of Higher Education and Research (BIHER), Bharath University, Chennai, Tamil Nadu, 600073, India
| |
Collapse
|
14
|
Botha NL, Cloete KJ, Šmit Ž, Isaković K, Akbari M, Morad R, Madiba I, David OM, Santos LPM, Dube A, Pelicon P, Maaza M. Ionome mapping and amino acid metabolome profiling of Phaseolus vulgaris L. seeds imbibed with computationally informed phytoengineered copper sulphide nanoparticles. DISCOVER NANO 2024; 19:8. [PMID: 38175418 PMCID: PMC10767113 DOI: 10.1186/s11671-023-03953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
This study reports the effects of a computationally informed and avocado-seed mediated Phyto engineered CuS nanoparticles as fertilizing agent on the ionome and amino acid metabolome of Pinto bean seeds using both bench top and ion beam analytical techniques. Physico-chemical analysis of the Phyto engineered nanoparticles with scanning-electron microscopy, transmission electron microscopy, X-ray diffraction, and Fourier Transform Infrared Spectroscopy confirmed the presence of CuS nanoparticles. Molecular dynamics simulations to investigate the interaction of some active phytocompounds in avocado seeds that act as reducing agents with the nano-digenite further showed that 4-hydroxybenzoic acid had a higher affinity for interacting with the nanoparticle's surface than other active compounds. Seeds treated with the digenite nanoparticles exhibited a unique ionome distribution pattern as determined with external beam proton-induced X-ray emission, with hotspots of Cu and S appearing in the hilum and micropyle area that indicated a possible uptake mechanism via the seed coat. The nano-digenite also triggered a plant stress response by slightly altering seed amino acid metabolism. Ultimately, the nano-digenite may have important implications as a seed protective or nutritive agent as advised by its unique distribution pattern and effect on amino acid metabolism.
Collapse
Affiliation(s)
- Nandipha L Botha
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology Laboratories, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, 0003, South Africa.
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, PO Box 722, Somerset West, Western Cape Province, 7129, South Africa.
| | - Karen J Cloete
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology Laboratories, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, 0003, South Africa.
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, PO Box 722, Somerset West, Western Cape Province, 7129, South Africa.
| | - Žiga Šmit
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia
- Jožef Stefan Institute, Jamova 39, 1001, Ljubljana, Slovenia
| | | | - Mahmood Akbari
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology Laboratories, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, 0003, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, PO Box 722, Somerset West, Western Cape Province, 7129, South Africa
| | - Razieh Morad
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology Laboratories, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, 0003, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, PO Box 722, Somerset West, Western Cape Province, 7129, South Africa
| | - Itani Madiba
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology Laboratories, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, 0003, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, PO Box 722, Somerset West, Western Cape Province, 7129, South Africa
| | | | - Luis P M Santos
- Graduate Program in Materials Science and Engineering, Federal University of Ceará, Campus of PICI, Fortaleza, CE, 60440-900, Brazil
| | - Admire Dube
- School of Pharmacy, University of the Western Cape, Bellville, 7535, South Africa
| | - Primoz Pelicon
- Jožef Stefan Institute, Jamova 39, 1001, Ljubljana, Slovenia
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanosciences and Nanotechnology Laboratories, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria, 0003, South Africa
- Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, PO Box 722, Somerset West, Western Cape Province, 7129, South Africa
| |
Collapse
|
15
|
Mane PC, Kadam DD, Khadse AN, Chaudhari AR, Ughade SP, Agawane SB, Chaudhari RD. Green adeptness in synthesis of non-toxic copper and cobalt oxide nanocomposites with multifaceted bioactivities. Cancer Nanotechnol 2023; 14:79. [DOI: 10.1186/s12645-023-00226-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 09/14/2023] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
In the present era, we are facing different health problems mainly concerning with drug resistance in microorganisms as well as in cancer cells. In addition, we are also facing the problems of controlling oxidative stress and insect originated diseases like dengue, malaria, chikungunya, etc. originated from mosquitoes. In this investigation, we unfurled the potential of Achatina fulica mucus in green synthesis of mucus mediated copper oxide bio-nanocomposites (SM-CuONC) and cobalt oxide bio-nanocomposites (SM-Co3O4NC). Herein we carried out the physico-chemical characterization like UV–Vis spectra, X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Transmission electron microscopy (TEM), Energy Dispersive X-ray Analysis (EDAX) and X-ray photoelectron spectroscopy (XPS) of as synthesized bio-nanocomposites. Both the bio-nanocomposites were tested for their potential as antimicrobial activity using well diffusion assay, anticancer activity by MTT assay, antioxidant activity by phosphomolybdenum assay and mosquito larvicidal activity.
Results
The results of this study revealed that, SM-CuONC and SM-Co3O4NC were synthesized successfully using A. fulica mucus. The FESEM and TEM data reveal the formation of nanoparticles with quasi-spherical morphology and average particle size of ~ 18 nm for both nanocomposites. The EDAX peak confirms the presence of elemental copper and cobalt in the analyzed samples. The X-ray diffraction analysis confirmed the crystalline nature of the CuO and Co3O4. The result of anti microbial study exhibited that, SM-CuONC showed maximum antimicrobial activity against Escherichia coli NCIM 2065 and Aspergillus fumigatus NCIM 902 which were noted as 2.36 ± 0.31 and 2.36 ± 0.59 cm resp. at 60 µg/well concentration. The result of anticancer activity for SM-CuONC was exhibited as, 68.66 ± 3.72, 62.66 ± 3.61 and 71.00 ± 2.36 percent kill, while SM-Co3O4NC exhibited 61.00 ± 3.57, 72.66 ± 4.50 and 71.66 ± 4.22 percent kill against Human colon cancer (HCT-15), Cervical cancer (HeLa), and Breast cancer (MDA-MB-231) cell lines, respectively, at 20 µg/well concentration. Both the nanocomposites also exhibited better antioxidant activity. Total antioxidant activity for SM-CuONC at 50 µg/ml concentration was found to be highest as 55.33 ± 3.72 while that of SM-Co3O4Ns was 52.00 ± 3.22 mM of ascorbic acid/µg respectively. Both bio-nanocomposites also exhibited 100% mosquito larvicidal activity at concentration ranging from 40 to 50 mg/l. During cytotoxicity study it is noted that at 5 µg/well concentration, SM-CuO and SM-Co3O4NCs suspension showed more than 97% viability of normal (L929) cell lines. We also studied phytotoxicity of both bio-nanocomposites on Triticum aestivum. In this study, 100% seed germination was observed when seeds are treated with SM-CuONC and SM-Co3O4NC at 500 mg/l and 250 mg/l concentration respectively.
Conclusions
This study concludes that in future as synthesized SM-CuONC and SM-Co3O4NC can be used in pharmaceutical, health care system for betterment and welfare of human life as both bio-nanocomposites exhibits better antimicrobial, anticancer, antioxidant and mosquito larvicidal potential.
Collapse
|
16
|
Kolbert Z, Molnár Á, Kovács K, Lipták-Lukácsik S, Benkő P, Szőllősi R, Gémes K, Erdei L, Rónavári A, Kónya Z. Nitro-oxidative response to internalized multi-walled carbon nanotubes in Brassica napus and Solanum lycopersicum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115633. [PMID: 37890253 DOI: 10.1016/j.ecoenv.2023.115633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/14/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
In addition to their beneficial effects on plant physiology, multi-walled carbon nanotubes (MWCNTs) are harmful to plants in elevated concentrations. This study compared the effects of two doses of MWCNT (10 and 80 mg/L) in Brassica napus and Solanum lycopersicum seedlings focusing on nitro-oxidative processes. The presence of MWCNTs was detectable in the root and hypocotyl of both species. Additionally, transmission electron microscopy analysis revealed that MWCNTs are heavily transformed within the root cells forming large aggregates. The uptake of MWCNTs negatively affected root viability and root cell proliferation of both species, but more intense toxicity was observed in S. lycopersicum compared to B. napus. The presence of MWCNT triggered more intense protein carbonylation in the relative sensitive S. lycopersicum, where increased hydrogen peroxide levels were observed. Moreover, MWCNT exposure increased the level of physiological protein tyrosine nitration which was more intense in S. lycopersicum where notable peroxynitrite accumulation occurred. These suggest for the first time that MWCNT triggers secondary nitro-oxidative stress which contributes to its toxicity. Moreover, the results indicate that the extent of the nitro-oxidative processes is associated with the extent of MWCNT toxicity.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary.
| | - Árpád Molnár
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary
| | - Kamilla Kovács
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary
| | - Sára Lipták-Lukácsik
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary
| | - Péter Benkő
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary; Institute of Plant Biology, Biological Research Centre, HUN-REN, Temesvári körút 62., 6726, Szeged, Hungary
| | - Réka Szőllősi
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary
| | - Katalin Gémes
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary; Institute of Plant Biology, Biological Research Centre, HUN-REN, Temesvári körút 62., 6726, Szeged, Hungary
| | - László Erdei
- Department of Plant Biology, University of Szeged, Közép fasor 52., 6726, Szeged, Hungary
| | - Andrea Rónavári
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, Rerrich Bela ter 1., 6720 Szeged, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, Faculty of Science and Informatics, University of Szeged, Rerrich Bela ter 1., 6720 Szeged, Hungary
| |
Collapse
|
17
|
Ullah I, Toor MD, Basit A, Mohamed HI, Gamal M, Tanveer NA, Shah ST. Nanotechnology: an Integrated Approach Towards Agriculture Production and Environmental Stress Tolerance in Plants. WATER, AIR, & SOIL POLLUTION 2023; 234:666. [DOI: 10.1007/s11270-023-06675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023]
|
18
|
Eevera T, Kumaran S, Djanaguiraman M, Thirumaran T, Le QH, Pugazhendhi A. Unleashing the potential of nanoparticles on seed treatment and enhancement for sustainable farming. ENVIRONMENTAL RESEARCH 2023; 236:116849. [PMID: 37558116 DOI: 10.1016/j.envres.2023.116849] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
The foremost challenge in farming is the storage of seeds after harvest and maintaining seed quality during storage. In agriculture, studies showed positive impacts of nanotechnology on plant development, seed storage, endurance under various types of stress, detection of seed damages, and seed quality. Seed's response varies with different types of nanoparticles depending on its physical and biochemical properties and plant species. Herein, we aim to cover the impact of nanoparticles on seed coating, dormancy, germination, seedling, nutrition, plant growth, stress conditions protection, and storage. Although the seed treatment by nanopriming has been shown to improve seed germination, seedling development, stress tolerance, and seedling growth, their full potential was not realized at the field level. Sustainable nano-agrochemicals and technology could provide good seed quality with less environmental toxicity. The present review critically discusses eco-friendly strategies that can be employed for the nanomaterial seed treatment and seed enhancement process to increase seedling vigor under different conditions. Also, an integrated approach involving four innovative concepts, namely green co-priming, nano-recycling of agricultural wastes, nano-pairing, and customized nanocontainer storage, has been proposed to acclimatize nanotechnology in farming.
Collapse
Affiliation(s)
- Tamilmani Eevera
- Department of Seed Science and Technology, Tamil Nadu Agricultural University, Coimbatore, 641 003, Tamil Nadu, India
| | - Shanmugam Kumaran
- Department of Biotechnology, Periyar Maniammai Institute of Science & Technology (Deemed to be University), Vallam, Thanjavur, 613 403, Tamil Nadu, India
| | - Maduraimuthu Djanaguiraman
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, 641003, Tamil Nadu, India
| | - Thanabalu Thirumaran
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551
| | - Quynh Hoang Le
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam
| | - Arivalagan Pugazhendhi
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Viet Nam; Institute of Research and Development, Duy Tan University, Da Nang, Viet Nam.
| |
Collapse
|
19
|
Ijaz M, Khan F, Ahmed T, Noman M, Zulfiqar F, Rizwan M, Chen J, H.M. Siddique K, Li B. Nanobiotechnology to advance stress resilience in plants: Current opportunities and challenges. Mater Today Bio 2023; 22:100759. [PMID: 37600356 PMCID: PMC10433128 DOI: 10.1016/j.mtbio.2023.100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
A sustainable and resilient crop production system is essential to meet the global food demands. Traditional chemical-based farming practices have become ineffective due to increased population pressures and extreme climate variations. Recently, nanobiotechnology is considered to be a promising approach for sustainable crop production by improving the targeted nutrient delivery, pest management efficacy, genome editing efficiency, and smart plant sensor implications. This review provides deeper mechanistic insights into the potential applications of engineered nanomaterials for improved crop stress resilience and productivity. We also have discussed the technology readiness level of nano-based strategies to provide a clear picture of our current perspectives of the field. Current challenges and implications in the way of upscaling nanobiotechnology in the crop production are discussed along with the regulatory requirements to mitigate associated risks and facilitate public acceptability in order to develop research objectives that facilitate a sustainable nano-enabled Agri-tech revolution. Conclusively, this review not only highlights the importance of nano-enabled approaches in improving crop health, but also demonstrated their roles to counter global food security concerns.
Collapse
Affiliation(s)
- Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Fahad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS 7250, Australia
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
- Xianghu Laboratory, Hangzhou, 311231, China
| | - Muhammad Noman
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs and Zhejiang Province, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Kadambot H.M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Petrth, WA, 6001, Australia
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
20
|
Muzammil S, Ashraf A, Siddique MH, Aslam B, Rasul I, Abbas R, Afzal M, Faisal M, Hayat S. A review on toxicity of nanomaterials in agriculture: Current scenario and future prospects. Sci Prog 2023; 106:368504231221672. [PMID: 38131108 DOI: 10.1177/00368504231221672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Phytonanotechnology plays a crucial part in the production of good quality and high-yield food. It can also alter the plant's production systems, hence permitting the efficient, controlled and stable release of agrochemicals such as fertilizers and pesticides. An advanced understanding of nanomaterials interaction with plant responses like localization and uptake, etc. could transfigure the production of crops with high disease resistance and efficient nutrients utilization. In agriculture, the use of nanomaterials has gained acceptance due to their wide-range applications. However, their toxicity and bioavailability are the major hurdles for their massive employment. Undoubtedly, nanoparticles positively influence seeds germination, growth and development, stress management and post-harvest handling of vegetables and fruits. These nanoparticles may also cause toxicity in plants through oxidative stress by generation of excessive reactive oxygen species thus affecting the cellular biomolecules and targeting different channels. Nanoparticles have shown to exert various effects on plants that are mainly affected by various attributes such as physicochemical features of nanomaterials, coating materials for nanoparticles, type of plant, growth stages and growth medium for plants. This article discusses the interaction, accretion and toxicity of nanomaterials in plants. The factors inducing nanotoxicity and the mechanisms followed by nanomaterials causing toxicity are also instructed. At the end, detoxification mechanism of plant is also presented.
Collapse
Affiliation(s)
- Saima Muzammil
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | | | - Bilal Aslam
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Ijaz Rasul
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Rasti Abbas
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| | - Muhammad Afzal
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Muhammad Faisal
- Institute of Plant Breeding and Biotechnology, MNS-University of Agriculture, Multan, Pakistan
| | - Sumreen Hayat
- Institute of Microbiology, Government College University, Faisalabad, Pakistan
| |
Collapse
|
21
|
Krumova S, Petrova A, Koleva D, Petrova S, Stoichev S, Petrova N, Tsonev T, Petrov P, Velikova V. Priming of Pisum sativum seeds with stabilized Pluronic P85 nanomicelles: effects on seedling development and photosynthetic function. PHOTOSYNTHETICA 2023; 61:432-440. [PMID: 39649480 PMCID: PMC11586843 DOI: 10.32615/ps.2023.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/04/2023] [Indexed: 12/10/2024]
Abstract
Natural and synthetic polymers are widely explored for improving seed germination and plant resistance to environmental constraints. Here, for the first time, we explore stabilized nanomicelles composed of the biocompatible triblock co-polymer Pluronic P85 (SPM) as a priming agent for Pisum sativum (var. RAN-1) seeds. We tested a wide concentration range of 0.04-30 g(SPM) L-1. Applying several structural and functional methods we revealed that the utilized nanomicelles can positively affect root length, without any negative effects on leaf anatomy and photosynthetic efficiency at 0.2 g L-1, while strong negative effects were recorded for 10 and 30 g(SPM) L-1 concerning root length, leaf histology, and photoprotection capability. Our data strongly suggest that SPM can safely be utilized for seed priming at specific concentrations and are suitable objects for further loading with plant growth regulators.
Collapse
Affiliation(s)
- S. Krumova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - A. Petrova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - D. Koleva
- Faculty of Biology, Sofia University ‘St. Kliment Ohridsky’, Sofia, Bulgaria
| | - S. Petrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - S. Stoichev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - N. Petrova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - T. Tsonev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - P. Petrov
- Institute of Polymers, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - V. Velikova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
22
|
Pathak A, Haq S, Meena N, Dwivedi P, Kothari SL, Kachhwaha S. Multifaceted Role of Nanomaterials in Modulating In Vitro Seed Germination, Plant Morphogenesis, Metabolism and Genetic Engineering. PLANTS (BASEL, SWITZERLAND) 2023; 12:3126. [PMID: 37687372 PMCID: PMC10490111 DOI: 10.3390/plants12173126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/07/2023] [Accepted: 08/12/2023] [Indexed: 09/10/2023]
Abstract
The agricultural practices of breeding, farm management and cultivation have improved production, to a great extent, in order to meet the food demands of a growing population. However, the newer challenges of climate change, global warming, and nutritional quality improvement will have to be addressed under a new scenario. Plant biotechnology has emerged as a reliable tool for enhancing crop yields by protecting plants against insect pests and metabolic engineering through the addition of new genes and, to some extent, nutritional quality improvement. Plant tissue culture techniques have provided ways for the accelerated clonal multiplication of selected varieties with the enhanced production of value-added plant products to increase modern agriculture. The in vitro propagation method has appeared as a pre-eminent approach for the escalated production of healthy plants in relatively shorter durations, also circumventing seasonal effects. However, there are various kinds of factors that directly or indirectly affect the efficiency of in vitro regeneration like the concentration and combination of growth regulators, variety/genotype of the mother plant, explant type, age of seedlings and other nutritional factors, and elicitors. Nanotechnology as one of the latest and most advanced approaches in the material sciences, and can be considered to be very promising for the improvement of crop production. Nanomaterials have various kinds of properties because of their small size, such as an enhanced contact surface area, increased reactivity, stability, chemical composition, etc., which can be employed in plant sciences to alter the potential and performance of plants to improve tissue culture practices. Implementing nanomaterials with in vitro production procedures has been demonstrated to increase the shoot multiplication potential, stress adaptation and yield of plant-based products. However, nanotoxicity and biosafety issues are limitations, but there is evidence that implies the promotion and further exploration of nanoparticles in agriculture production. The incorporation of properly designed nanoparticles with tissue culture programs in a controlled manner can be assumed as a new pathway for sustainable agriculture development. The present review enlists different studies in which treatment with various nanoparticles influenced the growth and biochemical responses of seed germination, as well as the in vitro morphogenesis of many crop species. In addition, many studies suggest that nanoparticles can be useful as elicitors for elevating levels of important secondary metabolites in in vitro cultures. Recent advancements in this field also depict the suitability of nanoparticles as a promising carrier for gene transfer, which show better efficiency than traditional Agrobacterium-mediated delivery. This review comprehensively highlights different in vitro studies that will aid in identifying research gaps and provide future directions for unexplored areas of research in important crop species.
Collapse
Affiliation(s)
- Ashutosh Pathak
- Department of Botany, University of Rajasthan, Jaipur 302004, Rajasthan, India; (A.P.); (S.H.); (N.M.); (P.D.)
| | - Shamshadul Haq
- Department of Botany, University of Rajasthan, Jaipur 302004, Rajasthan, India; (A.P.); (S.H.); (N.M.); (P.D.)
| | - Neelam Meena
- Department of Botany, University of Rajasthan, Jaipur 302004, Rajasthan, India; (A.P.); (S.H.); (N.M.); (P.D.)
| | - Pratibha Dwivedi
- Department of Botany, University of Rajasthan, Jaipur 302004, Rajasthan, India; (A.P.); (S.H.); (N.M.); (P.D.)
| | - Shanker Lal Kothari
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, Rajasthan, India;
| | - Sumita Kachhwaha
- Department of Botany, University of Rajasthan, Jaipur 302004, Rajasthan, India; (A.P.); (S.H.); (N.M.); (P.D.)
| |
Collapse
|
23
|
Alhammad BA, Abdel-Aziz HMM, Seleiman MF, Tourky SMN. How Can Biological and Chemical Silver Nanoparticles Positively Impact Physio-Chemical and Chloroplast Ultrastructural Characteristics of Vicia faba Seedlings? PLANTS (BASEL, SWITZERLAND) 2023; 12:2509. [PMID: 37447073 DOI: 10.3390/plants12132509] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Through interactions with plant cells, silver nanoparticles (AgNPs) with both biological and chemical origins can stimulate physiological and metabolic processes in plants. To ensure their safe application in the food chain, it is necessary to investigate their effects on plant systems. Therefore, the effects of chemical AgNPs (chem-AgNPs) and biologically synthesized AgNPs (bio-AgNPs) at different levels (i.e., 0, 10, and 50 ppm) on physiological and biochemical traits {i.e., root and shoot growth traits, photosynthetic pigments (Chl a, Chl b, carotenoids, and total pigments), soluble sugars, total carbohydrates, starch, H2O2, and antioxidant enzyme activities} of Vicia faba L. seedlings were investigated. AgNPs were biosynthesized from silver nitrate (AgNO3) by a green synthesis approach using Jatropha curcas seed extract. The synthesized AgNPs were characterized by UV-vis spectroscopy, transmission electron microscopy (TEM), zeta potential, Fourier-transform infrared spectra (FT-IR), and X-ray diffraction (XRD). The results showed that bio-AgNPs at 10 ppm resulted in the highest growth, physiological, and biological traits of faba bean seedlings in comparison with those obtained from both AgNO3 and chem-AgNPs treatments. On the other hand, all AgNPs treatments adversely affected the chloroplast ultrastructure, however, fewer negative effects were obtained with the application of 10 ppm bio-AgNPs. In addition, the roots and shoots of seedlings contained the lowest Ag content under different treatments at 10 ppm AgNPs in comparison to the highest level of AgNPs (50 ppm), which indicates that additional studies should be incorporated to ensure safe use of lower concentrations of bio-AgNPs in seed priming. In conclusion, the application of biogenic nanoparticles at 10 ppm can be recommended to enhance plant growth and the productivity of strategic crops.
Collapse
Affiliation(s)
- Bushra Ahmed Alhammad
- Biology Department, College of Science and Humanity Studies, Prince Sattam Bin Abdulaziz University, Al Kharj Box 292, Riyadh 11942, Saudi Arabia
| | - Heba M M Abdel-Aziz
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mahmoud F Seleiman
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
- Department of Crop Sciences, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt
| | - Shaimaa M N Tourky
- Botany Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
24
|
Matras E, Gorczyca A, Pociecha E, Przemieniecki SW, Zeliszewska P, Ocwieja M. Silver nanoparticles affect wheat ( Triticum aestivum L.) germination, seedling blight and yield. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:390-406. [PMID: 36944476 DOI: 10.1071/fp22086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 02/28/2023] [Indexed: 05/03/2023]
Abstract
The aim of the study was to evaluate the effect of two types of negatively charged quasi-spherical silver nanoparticles (AgNPs) at concentrations of 10, 20 and 30mgL-1 and silver ions at a concentration of 30mgL-1 on the growth, selected physiological aspects and yielding of wheat (Triticum aestivum L.) cv. Tybalt, and on plant resistance to seedling blight. Seed germination, α-amylase activity in seeds, morphology and infestation of seedlings by pathogens were assessed in a hydroponic treatment. Growth rate, PSII efficiency, heading and yield of the same plants were then analysed in pot culture. Results showed that the AgNPs and silver ions had a negative effect on roots, but reduced seedling blight and improved leaf area compared to the control. In addition, the AgNPs reduced with sodium borohydride in the presence of trisodium citrate at concentrations of 10 and 20mgL-1 stimulated germination, α-amylase activity and shoot length, which was not observed in the case of silver ions and the AgNPs reduced with sodium hypophosphite in the presence of sodium hexametaphosphate. In a pot experiment, the AgNPs improved plant growth, PSII efficiency, accelerated heading and increased yield-related parameters compared with the control. Results revealed the interaction strength in the following order: TCSB-AgNPs>SHSH-AgNPs>silver ions. TCSB-AgNPs in the lowest concentration had the most favourable effect, indicating their great potential for use in improving wheat cultivation.
Collapse
Affiliation(s)
- Ewelina Matras
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Mickiewicz Avenue 21, 31-120 Krakow, Poland
| | - Anna Gorczyca
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Mickiewicz Avenue 21, 31-120 Krakow, Poland
| | - Ewa Pociecha
- Department of Plant Breeding, Physiology and Seed Science, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Podluzna 3, 30-239 Krakow, Poland
| | - Sebastian Wojciech Przemieniecki
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawochenskiego 17, 10-720 Olsztyn, Poland
| | - Paulina Zeliszewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Magdalena Ocwieja
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| |
Collapse
|
25
|
Mathur P, Chakraborty R, Aftab T, Roy S. Engineered nanoparticles in plant growth: Phytotoxicity concerns and the strategies for their attenuation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107721. [PMID: 37156069 DOI: 10.1016/j.plaphy.2023.107721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/11/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
In the agricultural sector, the use of engineered nanoparticles (ENPs) has been acclaimed as the next big thing for sustaining and increasing crop productivity. A vast amount of literature is available regarding the growth-promoting attributes of different ENPs. In this context, it has been emphasized that the ENPs can bolster vegetative growth, leaf development, and seed setting and also help in mitigating the effects of abiotic and biotic stresses. At the same time, there have been a lot of speculations and concerns regarding the phytotoxicity of ENPs off-late. In this connection, many research articles have presented the negative effects of ENPs on plant systems. These studies have highlighted that almost all the ENPs impart a certain degree of phytotoxicity in terms of reduction in growth, biomass, impairment of photosynthesis, oxidative status of plant cells, etc. Mostly, the ENPs based on metal or metal oxides (Cd, Cr, Pb, Ag, Ce, etc.) and nonmetals (C) that are introduced into the environment are known to incite inhibitory effects. However, the phytotoxicity of ENPs are known to be determined mostly by the chemical nature of the element, size, surface charge, coating molecules, and abiotic factors like pH and light. This review article, therefore, elucidates the phytotoxic properties of different ENPs and the plant responses induced at the molecular level subjected to nanoparticle exposure. Moreover, the article highlights the probable strategies that may be adopted for the suppression of the phytotoxicity of ENPs to ensure the safe and sustainable application of ENPs in crop fields.
Collapse
Affiliation(s)
- Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, P.O. Raja Rammohumpur, Dist. Darjeeling, West Bengal, India
| | - Rakhi Chakraborty
- Department of Botany, Acharya Prafulla Chandra Roy Government College, P.O. Matigara, Dist. Darjeeling, West Bengal, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, P.O. Raja Rammohumpur, Dist. Darjeeling, West Bengal, India.
| |
Collapse
|
26
|
Lahuta LB, Szablińska-Piernik J, Stałanowska K, Horbowicz M, Górecki RJ, Railean V, Pomastowski P, Buszewski B. Exogenously Applied Cyclitols and Biosynthesized Silver Nanoparticles Affect the Soluble Carbohydrate Profiles of Wheat ( Triticum aestivum L.) Seedling. PLANTS (BASEL, SWITZERLAND) 2023; 12:1627. [PMID: 37111851 PMCID: PMC10145852 DOI: 10.3390/plants12081627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Cyclitols, such as myo-inositol and its isomers and methyl derivatives (i.e., d-chiro-inositol and d-pinitol (3-O-methyl-chiro-inositol)), are classified as osmolytes and osmoprotectants and are significantly involved in plant responses to abiotic stresses, such as drought, salinity and cold. Moreover, d-pinitol demonstrates a synergistic effect with glutathione (GSH), increasing its antioxidant properties. However, the role of cyclitols in plant protection against stresses caused by metal nanoparticles is not yet known. Therefore, the present study examined the effects of myo-inositol, d-chiro-inositol and d-pinitol on wheat germination, seedling growth and changes in the profile of soluble carbohydrates in response to biologically synthesized silver nanoparticles ((Bio)Ag NPs). It was found that cyclitols were absorbed by germinating grains and transported within the growing seedlings but this process was disrupted by (Bio)Ag NPs. Cyclitols applied alone induced sucrose and 1-kestose accumulation in seedlings slightly, while (Bio)Ag NP doubled the concentrations of both sugars. This coincided with a decrease in monosaccharides; i.e., fructose and glucose. Cyclitols and (Bio)Ag NPs present in the endosperm resulted in reductions in monosaccharides, maltose and maltotriose, with no effect on sucrose and 1-kestose. Similar changes occurred in seedlings developing from primed grains. Cyclitols that accumulated in grain and seedlings during grain priming with d-pinitol and glutathione did not prevent the phytotoxic effects of (Bio)Ag NPs.
Collapse
Affiliation(s)
- Lesław B. Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Joanna Szablińska-Piernik
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Karolina Stałanowska
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Marcin Horbowicz
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Ryszard J. Górecki
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | - Viorica Railean
- Department of Infectious, Invasive Diseases and Veterinary Administration, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Toruń, Poland
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| | - Bogusław Buszewski
- Interdisciplinary Center for Modern Technologies, Nicolaus Copernicus University in Torun, 87-100 Toruń, Poland
| |
Collapse
|
27
|
Shelar A, Nile SH, Singh AV, Rothenstein D, Bill J, Xiao J, Chaskar M, Kai G, Patil R. Recent Advances in Nano-Enabled Seed Treatment Strategies for Sustainable Agriculture: Challenges, Risk Assessment, and Future Perspectives. NANO-MICRO LETTERS 2023; 15:54. [PMID: 36795339 PMCID: PMC9935810 DOI: 10.1007/s40820-023-01025-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/20/2023] [Indexed: 05/14/2023]
Abstract
Agro seeds are vulnerable to environmental stressors, adversely affecting seed vigor, crop growth, and crop productivity. Different agrochemical-based seed treatments enhance seed germination, but they can also cause damage to the environment; therefore, sustainable technologies such as nano-based agrochemicals are urgently needed. Nanoagrochemicals can reduce the dose-dependent toxicity of seed treatment, thereby improving seed viability and ensuring the controlled release of nanoagrochemical active ingredients However, the applications of nanoagrochemicals to plants in the field raise concerns about nanomaterial safety, exposure levels, and toxicological implications to the environment and human health. In the present comprehensive review, the development, scope, challenges, and risk assessments of nanoagrochemicals on seed treatment are discussed. Moreover, the implementation obstacles for nanoagrochemicals use in seed treatments, their commercialization potential, and the need for policy regulations to assess possible risks are also discussed. Based on our knowledge, this is the first time that we have presented legendary literature to readers in order to help them gain a deeper understanding of upcoming nanotechnologies that may enable the development of future generation seed treatment agrochemical formulations, their scope, and potential risks associated with seed treatment.
Collapse
Affiliation(s)
- Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Shivraj Hariram Nile
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Science, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse, 10589, Berlin, Germany
| | - Dirk Rothenstein
- Institute for Materials Science, University of Stuttgart, 70569, Stuttgart, Germany
| | - Joachim Bill
- Institute for Materials Science, University of Stuttgart, 70569, Stuttgart, Germany
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Manohar Chaskar
- Faculty of Science and Technology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| | - Guoyin Kai
- Zhejiang Provincial International S&T Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Science, Jinhua Academy, Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China.
| | - Rajendra Patil
- Department of Technology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| |
Collapse
|
28
|
Romanovski V, Roslyakov S, Trusov G, Periakaruppan R, Romanovskaia E, Chan HL, Moskovskikh D. Synthesis and effect of CoCuFeNi high entropy alloy nanoparticles on seed germination, plant growth, and microorganisms inactivation activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23363-23371. [PMID: 36323967 DOI: 10.1007/s11356-022-23918-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Implementation of nanotechnology in agriculture is of interest primarily to improve the growth and productivity of crops, and to minimize the use of traditional expensive chemical fertilizers. This work presents a simple energy-conservative approach for the synthesis of CoCuFeNi high entropy alloy nanoparticles (HEA-NPs) capable of forming a stable suspension with a concentration of 0.3 g/L. The size, composition, and morphology of the nanoparticles were analyzed by XRD, SEM, TEM, and EDS. Obtained HEA-NPs were characterized by fine crystallinity with an average size of 25 nm. The investigated suspensions of HEA-NPs were tested for seeds germination and plants growth. The use of suspension of CoCuFeNi HEA-NPs for plant irrigating together with ordinary water showed positive results in plant biostimulation, which resulted in the plant height up to 12% for watercress and up to 50% for oil radish. CoCuFeNi HEA-NPs showed nice inactivation activity for Pseudomonas aeruginosa that was comparable for the use of Tetracycline.
Collapse
Affiliation(s)
- Valentin Romanovski
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA.
- Center of Functional Nano-Ceramics, National University of Science and Technology "MISIS", Lenin Av., 4, 119049, Moscow, Russia.
| | - Sergey Roslyakov
- Center of Functional Nano-Ceramics, National University of Science and Technology "MISIS", Lenin Av., 4, 119049, Moscow, Russia
| | - German Trusov
- Center of Functional Nano-Ceramics, National University of Science and Technology "MISIS", Lenin Av., 4, 119049, Moscow, Russia
| | - Rajiv Periakaruppan
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore 21, Tamilnadu, India
| | - Elena Romanovskaia
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Ho Lun Chan
- Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA, 22904, USA
| | - Dmitry Moskovskikh
- Center of Functional Nano-Ceramics, National University of Science and Technology "MISIS", Lenin Av., 4, 119049, Moscow, Russia
| |
Collapse
|
29
|
da Costa Siqueira JT, Reis AC, Lopes JML, Ladeira LO, Viccini LF, de Mello Brandão H, Munk M, de Sousa SM. Chromosomal aberrations and changes in the methylation patterns of Lactuca sativa L. (Asteraceae) exposed to carbon nanotubes. Biologia (Bratisl) 2023. [DOI: 10.1007/s11756-023-01325-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
Salehi H, Cheheregani Rad A, Raza A, Djalovic I, Prasad PVV. The comparative effects of manganese nanoparticles and their counterparts (bulk and ionic) in Artemisia annua plants via seed priming and foliar application. FRONTIERS IN PLANT SCIENCE 2023; 13:1098772. [PMID: 36743542 PMCID: PMC9893273 DOI: 10.3389/fpls.2022.1098772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
The world has experienced an unprecedented boom in nanotechnology. Nanoparticles (NPs) are likely to act as biostimulants in various plants due to having high surface/volume value. However, understanding the actual effect of NPs is essential to discriminate them from other counterparts in terms of being applicable, safe and cost-effective. This study aimed to assay the impact of manganese(III) oxide (Mn2O3)-NPs via seed-priming (SP) and a combination of SP and foliar application (SP+F) on Artemisia. annua performance at several times intervals and comparison with other available manganese (Mn) forms. Our findings indicate that SP with MnSO4 and Mn2O3-NPs stimulates the processes that occur prior to germination and thus reduces the time for radicle emergence. In both applications (i.e., SP and +F), none of the Mn treatments did show adverse phytotoxic on A. annua growth at morpho-physio and biochemical levels except for Mn2O3, which delayed germination and further plant growth, subsequently. Besides, from physio-biochemical data, it can be inferred that the general mechanism mode of action of Mn is mainly attributed to induce the photosynthetic processes, stimulate the superoxide dismutase (SOD) activity, and up-regulation of proline and phenolic compounds. Therefore, our results showed that both enzymatic and non-enzymatic antioxidants could be influenced by the application of Mn treatments in a type-dependent manner. In general, this study revealed that Mn2O3-NPs at the tested condition could be used as biostimulants to improve germination, seedling development and further plant growth. However, they are not as effective as MnSO4 treatments. Nonetheless, these findings can be used to consider and develop Mn2O3-NPs priming in future studies to improve seed germination and seedling quality in plants.
Collapse
Affiliation(s)
- Hajar Salehi
- Laboratory of Plant Cell Biology, Department of Biology, Bu-Ali Sina University, Hamedan, Iran
| | | | - Ali Raza
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
31
|
Cembrowska-Lech D, Rybak K. Nanopriming of Barley Seeds-A Shotgun Approach to Improve Germination under Salt Stress Conditions by Regulating of Reactive Oxygen Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:405. [PMID: 36679118 PMCID: PMC9864488 DOI: 10.3390/plants12020405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Abiotic stresses are the most important environmental factors affecting seed germination, and negatively affect crop production worldwide. Water availability is essential for proper seed imbibition and germination. The mechanism by which seeds can germinate in areas with high soil salinity is, however, still unclear. The present study aims to investigate the protective roles of AgNPs in alleviating stress symptoms caused by salinity exposure in barley seeds. For this purpose, different treatment combinations of seed priming with PVP-AgNPs in salinity stress conditions were used. Salt stress (150 and 200 mM) was found to reduce seed germination by 100% when compared to the control. Under NaCl concentrations, seed priming with PVP-AgNPs (40 mg L-1) only for 2 h, reduced salinity effects. Salinity resulted in increased reactive oxygen species (ROS) generation compared to the control. However, increased antioxidants in the NPs treatments, such as SOD, CAT, GR, GPX (expression at both genes, such as HvSOD, HvCAT, HvGR or HvGPX, and protein levels) and glutathione content, scavenged these ROS. Considering all of the parameters under study, priming alleviated salt stress. To summarize, seed priming with AgNPs has the potential to alleviate salinity stress via reduced ROS generation and activation of the antioxidant enzymatic system during germination.
Collapse
Affiliation(s)
- Danuta Cembrowska-Lech
- Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
| | - Kinga Rybak
- Institute of Biology, University of Szczecin, Wąska 13, 71-415 Szczecin, Poland
| |
Collapse
|
32
|
Pete AM, Ingle PU, Raut RW, Shende SS, Rai M, Minkina TM, Rajput VD, Kalinitchenko VP, Gade AK. Biogenic Synthesis of Fluorescent Carbon Dots (CDs) and Their Application in Bioimaging of Agricultural Crops. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:209. [PMID: 36616122 PMCID: PMC9824522 DOI: 10.3390/nano13010209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 05/11/2023]
Abstract
Fluorescent nanoparticles have a transformative potential for advanced sensors and devices for point-of-need diagnostics and bioimaging, bypassing the technical burden of meeting the assay performance requirements. Carbon dots (CDs) are rapidly emerging carbon-based nanomaterials. Regardless of their fate, they will find increasing applications. In this study, a simple approach for synthesizing CDs from fruit peels was developed. The CDs were fabricated from Annona squamosa (L.) peels using a carbonization technique through microwave-assisted hydrothermal digestion at temperatures around 200 °C. Synthesized CDs were detected using a UV transilluminator for the preliminary confirmation of the presence of fluorescence. UV-Vis spectrophotometry (absorbance at 505 nm) analysis, zeta potential measurement (-20.8 mV), nanoparticles tracking analysis (NTA) (average size: 15.4 nm and mode size: 9.26 nm), photoluminescence, and Fourier transform infrared (FT-IR) analysis were used to identify the capping functional groups on the CDs. The total quantum yield exhibited was 8.93%, and the field emission scanning electron microscopy (FESEM) showed the size range up to 40 nm. The germinating mung bean (Vigna radiata (L.)) seeds were incubated with biogenically synthesized CDs to check the absorption of CDs by them. The fluorescence was observed under a UV-transilluminator in the growing parts of seeds, indicating the absorption of CDs during the germination, development, and growth. These fluorescent CDs could be used as a bioimaging agent. This novel method of synthesizing CDs was found to be eco-friendly, rapid, and cost-effective.
Collapse
Affiliation(s)
- Akshay M. Pete
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, Maharashtra, India
| | - Pramod U. Ingle
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, Maharashtra, India
| | - Rajesh W. Raut
- Department of Botany, The Institute of Science, 15, Madame Cama Road, Mumbai 400032, Maharashtra, India
| | - Sudhir S. Shende
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, Maharashtra, India
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Mahendra Rai
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, Maharashtra, India
- Department of Microbiology, Nicolaus Copernicus University, 87-100 Torun, Poland
| | - Tatiana M. Minkina
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | - Vishnu D. Rajput
- Academy of Biology and Biotechnology, Southern Federal University, 344090 Rostov-on-Don, Russia
| | | | - Aniket K. Gade
- Nanobiotechnology Laboratory, Department of Biotechnology, Sant Gadge Baba Amravati University, Amravati 444602, Maharashtra, India
- Department of Biological Sciences and Biotechnology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
| |
Collapse
|
33
|
Saleem S, Khan MS. Phyto-interactive impact of green synthesized iron oxide nanoparticles and Rhizobium pusense on morpho-physiological and yield components of greengram. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:146-160. [PMID: 36403488 DOI: 10.1016/j.plaphy.2022.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/24/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
The iron oxide nanoparticles (IONPs) prepared by green synthesis method using Syzigium cumini leaf extract was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The XRD confirmed the crystalline structure of green synthesized NPs measuring around 33 nm while SEM revealed its nearly spherical shape. Rhizobium species recovered from greengram nodules, identified by 16s rRNA gene sequencing as Rhizobium pusense produced 30% more exopolysaccharides (EPS) in basal medium treated with 1000 μg IONPs/ml. Compositional variation in EPS was observed by Fourier-transform infrared spectroscopy (FTIR). There was no reduction in rhizobial viability and no damage to bacterial membrane was observed under SEM and confocal laser scanning microscopy (CLSM), respectively. Effects of IONPs and R. pusense, used alone and in combination on the growth and development of greengram plants varied considerably. Plants grown with IONPs and R. pusence, used alone and in combination, showed a significant increase in seed germination rate, length and dry biomass of plant organs and seed components compared to controls. The IONPs in the presence of rhizobial strain further increased seed germination, plant growth, seed protein and pigments. Greater protein content (442 mg/g) was observed in seeds at 250 mg/kg of IONPs compared to control. Plants raised with mixture of IONPs plus R. pusense had maximum chlorophyll content (39.2 mg/g FW) while proline content decreased by 53% relative to controls. This study confirms that the green synthesis of IONPs from S. cumini leaf possess useful plant growth promoting effects and could be developed as a nano-biofertilizer for optimizing legume production.
Collapse
Affiliation(s)
- Samia Saleem
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India.
| | - Mohd Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
34
|
Chandrika K, Qureshi AA, Singh A, Sarada C, Gopalan B. Fe and Zn Metal Nanocitrates as Plant Nutrients through Soil Application. ACS OMEGA 2022; 7:45481-45492. [PMID: 36530273 PMCID: PMC9753186 DOI: 10.1021/acsomega.2c06096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/18/2022] [Indexed: 06/17/2023]
Abstract
Nanocitrates of iron (Fe) and zinc (Zn) in the form of plant nanonutrients were examined for their behavior in soil and the uptake of these by 20-day old groundnut (Arachis hypogaea) seedlings under greenhouse conditions. The Fe (0.04 to 0.008 mmol/kg of soil) and Zn (0.02 to 0.004 mmol/kg of soil) nanocitrates were applied to soil and compared with commercial counterparts (FeSO4, ZnSO4, nano-Fe, nano-Zn, Fe-EDTA, Zn-EDTA). The combined nanocitrate compositions were also formulated by physical means and characterized. The plant uptake of Fe and Zn was determined through atomic absorption spectrometry (AAS). All the treated plants showed good germination and higher vigor indexes compared to the control treatments. The highest available Fe and Zn soil contents after leaching were 150.5 and 18.9 mg/kg, respectively, in combined nanocitrate compositions, whereas in the control (untreated) soil, the Fe and Zn contents were 6.0 and 0.7 mg/kg, respectively. The plant's Fe content was 0.48 mg/pot for the combined nanocitrate composition, and that of the untreated plant sample was 0.02 mg/pot. The plant's Zn content was 82.3 μg/pot for pure zinc citrate, and the respective untreated-plant Zn content was 2.1 μg/pot. These values are better than those observed for commercial fertilizers. Additionally, no trend in promotional and antagonistic correlations between Fe and Zn in combined nanocitrates was observed in the studied period (20 days in duration). Among the 34 synthesized citrates, six nanocitrates show promising trends for evaluation under field conditions with higher stability.
Collapse
Affiliation(s)
- K.S.V.
Poorna Chandrika
- Chemistry, Birla Institute of Technology and Science - Hyderabad
Campus, B-119, Jawahar Nagar, Kapra Mandal, Hyderabad500078, India
- Crop
Production Section, ICAR-Indian Institute
of Oilseeds Research, Rajendranagar, Hyderabad500030, Telangana, India
| | - A. Aziz Qureshi
- Crop
Production Section, ICAR-Indian Institute
of Oilseeds Research, Rajendranagar, Hyderabad500030, Telangana, India
| | - Anupama Singh
- Division
of Agricultural Chemicals, Indian Agricultural
Research Institute, Pusa campus, New Delhi110012, India
| | - Chunduri Sarada
- Social
Science Section, ICAR Indian Institute of
Oilseeds Research, Rajendranagar, Hyderabad500030, Telangana, India
| | - Balaji Gopalan
- Chemistry, Birla Institute of Technology and Science - Hyderabad
Campus, B-119, Jawahar Nagar, Kapra Mandal, Hyderabad500078, India
| |
Collapse
|
35
|
Lahuta LB, Szablińska-Piernik J, Stałanowska K, Głowacka K, Horbowicz M. The Size-Dependent Effects of Silver Nanoparticles on Germination, Early Seedling Development and Polar Metabolite Profile of Wheat ( Triticum aestivum L.). Int J Mol Sci 2022; 23:13255. [PMID: 36362042 PMCID: PMC9657336 DOI: 10.3390/ijms232113255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 10/15/2023] Open
Abstract
The phytotoxicity of silver nanoparticles (Ag NPs) to plant seeds germination and seedlings development depends on nanoparticles properties and concentration, as well as plant species and stress tolerance degrees. In the present study, the effect of citrate-stabilized spherical Ag NPs (20 mg/L) in sizes of 10, 20, 40, 60, and 100 nm, on wheat grain germination, early seedlings development, and polar metabolite profile in 3-day-old seedlings were analyzed. Ag NPs, regardless of their sizes, did not affect the germination of wheat grains. However, the smaller nanoparticles (10 and 20 nm in size) decreased the growth of seedling roots. Although the concentrations of total polar metabolites in roots, coleoptile, and endosperm of seedlings were not affected by Ag NPs, significant re-arrangements of carbohydrates profiles in seedlings were noted. In roots and coleoptile of 3-day-old seedlings, the concentration of sucrose increased, which was accompanied by a decrease in glucose and fructose. The concentrations of most other polar metabolites (amino acids, organic acids, and phosphate) were not affected by Ag NPs. Thus, an unknown signal is released by small-sized Ag NPs that triggers affection of sugars metabolism and/or distribution.
Collapse
Affiliation(s)
- Lesław Bernard Lahuta
- Department of Plant Physiology, University of Warmia and Mazury, Genetics and Biotechnology, Oczapowskiego Street 1A/103, 10-719 Olsztyn, Poland
| | | | | | | | | |
Collapse
|
36
|
Bouaicha O, Tiziani R, Maver M, Lucini L, Miras-Moreno B, Zhang L, Trevisan M, Cesco S, Borruso L, Mimmo T. Plant species-specific impact of polyethylene microspheres on seedling growth and the metabolome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156678. [PMID: 35710005 DOI: 10.1016/j.scitotenv.2022.156678] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) are ubiquitous contaminants. In recent decades, the hazardous impacts of MPs on the environment have raised significant concern. However, little attention has been focused on the interaction between MPs and plants in terrestrial agroecosystems. This study aims to investigate the effects of polyethylene microspheres (PE-MS) on the germination, morphology, and metabolism of barley (Hordeum vulgare L.), cucumber (Cucumis sativus L.), and tomato (Solanum lycopersicum L.). Specifically, seeds were soaked in PE-MS solutions at three concentrations (10, 100, and 1000 mg L-1), while control seeds were treated with distilled water. After five days, the morphological parameters of barley (i.e., shoot and root biomass, length, and average diameter) were significantly affected by PE-MS treatment, even at the lowest concentration, without a dose dependency. On the other hand, the effect of PE-MS on the morphological parameters of cucumber and tomato was evident only at the highest concentration (1000 mg L-1). PE-MS also induced metabolomic reprogramming of shoots and roots in all three plant species. There was a downregulation of fatty acids and secondary metabolites (except in tomato shoots). In addition, the response of amino acids and hormones was highly heterogeneous among species and plant parts. In particular, the response of metabolites changed within species among different plant parts. In conclusion, we found a strong influence of MS-PE on the metabolic profile of the three plant species and a positive priming of seedling growth, especially in barley, where all the morphological parameters considered were significantly improved. Further investigations are needed to fully understand the mechanisms underlying MP-plant interactions, especially in the long term.
Collapse
Affiliation(s)
- Oussama Bouaicha
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Raphael Tiziani
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Mauro Maver
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Luigimaria Borruso
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy.
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, Bolzano, Italy; Competence Centre for Plant Health, Free University of Bozen-Bolzano, Bolzano, Italy.
| |
Collapse
|
37
|
Sharma S, Shree B, Sharma A, Irfan M, Kumar P. Nanoparticle-based toxicity in perishable vegetable crops: Molecular insights, impact on human health and mitigation strategies for sustainable cultivation. ENVIRONMENTAL RESEARCH 2022; 212:113168. [PMID: 35346658 DOI: 10.1016/j.envres.2022.113168] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/08/2022] [Accepted: 03/16/2022] [Indexed: 05/27/2023]
Abstract
With the advancement of nanotechnology, the use of nanoparticles (NPs) and nanomaterials (NMs) in agriculture including perishable vegetable crops cultivation has been increased significantly. NPs/NMs positively affect plant growth and development, seed germination, plant stress management, and postharvest handling of fruits and vegetables. However, these NPs sometimes cause toxicity in plants by oxidative stress and excess reactive oxygen species production that affect cellular biomolecules resulting in imbalanced biological and metabolic processes in plants. Therefore, information about the mechanism underlying interactions of NPs with plants is important for the understanding of various physiological and biochemical responses of plants, evaluating phytotoxicity, and developing mitigation strategies for vegetable crops cultivation. To address this, recent morpho-physiological, biochemical and molecular insights of nanotoxicity in the vegetable crops have been discussed in this review. Further, factors affecting the nanotoxicity in vegetables and mitigation strategies for sustainable cultivation have been reviewed. Moreover, the bioaccumulation and biomagnification of NPs and associated phytotoxicity can cause serious effects on human health which has also been summarized. The review also highlights the use of advanced omics approaches and interdisciplinary tools for understanding the nanotoxicity and their possible use for mitigating phytotoxicity.
Collapse
Affiliation(s)
- Shweta Sharma
- MS Swaminathan School of Agriculture, Shoolini University of Biotechnology and Management Sciences, Solan, 173229, HP, India
| | - Bharti Shree
- Department of Agricultural Biotechnology, CSK HPKV, Palampur, 176062, HP, India
| | - Ajit Sharma
- Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, HP, India
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| | - Pankaj Kumar
- Dr YS Parmar University of Horticulture and Forestry, Nauni, Solan, 173230, HP, India.
| |
Collapse
|
38
|
Mubeen B, Hasnain A, Mehboob R, Rasool R, Riaz A, Elaskary SA, Shah MM, Faridi TA, Ullah I. Hydroponics and elicitation, a combined approach to enhance the production of designer secondary medicinal metabolites in Silybum marianum. FRONTIERS IN PLANT SCIENCE 2022; 13:897795. [PMID: 36035667 PMCID: PMC9399754 DOI: 10.3389/fpls.2022.897795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Medicinal plants have been used to cure human diseases since decades. Silybum marianum, a medicinal plant, is regarded as a source of secondary metabolites with therapeutic value against liver diseases and diabetes. The present study was conducted to enrich the production of secondary metabolites in the vegetative parts of Silybum marianum using elicitation strategy in hydroponic system with different elicitors. The elicitors of fungus Aspergillus niger (0.2 g/L), methyl jasmonate (MeJA) (100 μM) and silver nanoparticles (AgNPs) (1 ppm) were added in hydroponic medium, individually and in combination form to the 15 days old plant. The elicitor-treated plants were harvested at different time points (24-144 h; increment 24 h) and their biochemical parameters like phenolics, flavonoids, nitric oxide (NO), and superoxide dismutase (SOD) were analyzed. The results showed hyper-accumulation of these biochemical contents, especially in response to MeJA (100 μM), followed by AgNPs (1 ppm) and co-treatment of AgNPs (1 ppm) with other elicitors. The results revealed that the treatment with MeJA (100 μM) exhibited the highest flavonoid (304 μg g-1), phenolic (372 μg g-1), and SOD (16.2 U g-1) contents. For NO levels, the maximum value of 198.6 nmole g-1 was achieved in response to the treatment with MeJA + Green synthesized AgNPs (100 μM + 1 ppm). Our findings depicted an enhanced production of medicinally important plant secondary metabolites and antioxidants; hence, the method applied in this study can play a significant role to improve therapeutic values of the plants.
Collapse
Affiliation(s)
- Bismillah Mubeen
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ammarah Hasnain
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Riffat Mehboob
- Lahore Medical Research Centre, LLP and LMRC Laboratories, Lahore, Pakistan
| | - Rabia Rasool
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Ayesha Riaz
- Department of Zoology, GC Women University, Faisalabad, Pakistan
| | - Shymaa Abdelsattar Elaskary
- Medical Microbiology and Immunology, Faculty of Medicine, Menoufia University, Al Minufiyah, Egypt
- Medical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| | | | - Tallat Anwar Faridi
- University Institute of Public Health, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Paksitan
| | - Inam Ullah
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
39
|
The Effect of Bio-Synthesized Silver Nanoparticles on Germination, Early Seedling Development, and Metabolome of Wheat (Triticum aestivum L.). Molecules 2022; 27:molecules27072303. [PMID: 35408702 PMCID: PMC9000288 DOI: 10.3390/molecules27072303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/30/2022] Open
Abstract
Changes in the metabolome of germinating seeds and seedlings caused by metal nanoparticles are poorly understood. In the present study, the effects of bio-synthesized silver nanoparticles ((Bio)Ag NPs) on grains germination, early seedlings development, and metabolic profiles of roots, coleoptile, and endosperm of wheat were analyzed. Grains germinated well in (Bio)Ag NPs suspensions at the concentration in the range 10–40 mg/L. However, the growth of coleoptile was inhibited by 25%, regardless of (Bio)Ag NPs concentration tested, whereas the growth of roots gradually slowed down along with the increasing concentration of (Bio)Ag NPs. The deleterious effect of Ag NPs on roots was manifested by their shortening, thickening, browning of roots tips, epidermal cell death, progression from apical meristem up to root hairs zone, and the inhibition of root hair development. (Bio)Ag NPs stimulated ROS production in roots and affected the metabolic profiles of all tissues. Roots accumulated sucrose, maltose, 1-kestose, phosphoric acid, and some amino acids (i.e., proline, aspartate/asparagine, hydroxyproline, and branched-chain amino acids). In coleoptile and endosperm, contrary to roots, the concentration of most metabolites decreased. Moreover, coleoptile accumulated galactose. Changes in the concentration of polar metabolites in seedlings revealed the affection of primary metabolism, disturbances in the mobilization of storage materials, and a translocation of sugars and amino acids from the endosperm to growing seedlings.
Collapse
|
40
|
Modi S, Yadav VK, Choudhary N, Alswieleh AM, Sharma AK, Bhardwaj AK, Khan SH, Yadav KK, Cheon JK, Jeon BH. Onion Peel Waste Mediated-Green Synthesis of Zinc Oxide Nanoparticles and Their Phytotoxicity on Mung Bean and Wheat Plant Growth. MATERIALS 2022; 15:ma15072393. [PMID: 35407725 PMCID: PMC8999814 DOI: 10.3390/ma15072393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 02/06/2023]
Abstract
Nanoparticles and nanomaterials have gained a huge amount of attention in the last decade due to their unique and remarkable properties. Metallic nanoparticles like zinc oxide nanoparticles (ZnONPs) have been used very widely as plant nutrients and in wastewater treatment. Here, ZnONPs were synthesized by using onion peel and characterized by various sophisticated instruments like Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), and field emission scanning electron microscopes (FESEM). FTIR confirmed ZnONPs synthesis due to the formation of the band in the region of 400-800 cm-1, while FESEM confirmed the spherical shape of the particles whose size varies in the range of 20-80 nm. FTIR revealed several bands from 1000-1800 cm-1 which indicates the capping by the organic molecules on the ZnONPs, which came from onion peel. It also has carbonyl and hydroxyl groups, due to the organic molecules present in the Allium cepa peel waste. The average hydrodynamic size of ZnONPs was 500 nm as confirmed by DLS. The synthesized ZnONPs were then used as a plant nutrient where their effect was evaluated on the growth of Vigna radiate (mung bean) and Triticum aestivum (wheat seeds). The results revealed that the germination and seedling of mung and wheat seeds with ZnONPs were grown better than the control seed. However, seeds of mung and wheat with ZnONPs at median concentration exposure showed an enhancement in percent germination, root, and shoot length in comparison to control. Thus, the effect of ZnONPs has been proved as a nano-based nutrient source for agricultural purposes.
Collapse
Affiliation(s)
- Shreya Modi
- Department of Microbiology, Shri Sarvajanik Science College, Mehsana 384001, India;
| | - Virendra Kumar Yadav
- Department of Microbiology, School of Sciences, P P Savani University, Surat 394125, India;
| | - Nisha Choudhary
- Department of Environmental Sciences, School of Sciences, P P Savani University, Surat 394125, India;
| | - Abdullah M. Alswieleh
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Anish Kumar Sharma
- Department of Biotechnology, School of Sciences, P P Savani University, Surat 394125, India;
| | - Abhishek Kumar Bhardwaj
- Department of Environmental Science, Amity School of Life Sciences, Amity University, Gwalior 474001, India;
| | - Samreen Heena Khan
- Research and Development Centre, YNC Envis Pvt. Ltd., New Delhi 110059, India;
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Bhopal 462044, India;
| | - Ji-Kwang Cheon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
| | - Byong-Hun Jeon
- Department of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul 04763, Korea;
- Correspondence:
| |
Collapse
|
41
|
Uddin S, Iqbal J, Safdar LB, Ahmad S, Abbasi BA, Capasso R, Kazi M, Quraihi UM. Green Synthesis of BPL-NiONPs Using Leaf Extract of Berberis pachyacantha: Characterization and Multiple In Vitro Biological Applications. Molecules 2022; 27:molecules27072064. [PMID: 35408462 PMCID: PMC9000283 DOI: 10.3390/molecules27072064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/04/2022] [Accepted: 03/11/2022] [Indexed: 02/05/2023] Open
Abstract
An eco-friendly biogenic method for the synthesis of nickel oxide nanoparticles (NiONPs) using phytochemically rich Berberis pachyacantha leaf extract (BPL) was established. To achieve this purpose, 80 mL of BPL extract was used as a suitable reducing and capping agent for the synthesis of NiONPs. The synthesis of BPL-based nickel oxide nanoparticles (BPL@NiONPs) was confirmed using different microscopic and spectroscopic techniques: UV Visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy dispersive X-ray (EDX), dynamic light scattering (DLS) and scanning electron microscopy (SEM) analysis. Spectroscopically, BPL-NiONPs was found with a pure elemental composition (oxygen and nickel), average size (22.53 nm) and rhombohedral structure with multiple functional groups (-OH group and Ni-O formation) on their surface. In the next step, the BPL extract and BPL@NiONPs were further investigated for various biological activities. As compared to BPL extract, BPL@NiONPs exhibited strong biological activities. BPL@NiONPs showed remarkable antioxidant activities in terms of 2,2-diphenyl-1-picrylhydrazyl (76.08%) and total antioxidant capacity (68.74%). Antibacterial action was found against Pseudomonas aeruginosa (27 mm), Staphylococcus aureus (20 mm) and Escherichia coli (19.67 mm) at 500 µg/mL. While antifungal potentials were shown against Alternaria alternata (81.25%), Fusarium oxysporum (42.86%) and Aspergillus niger (42%) at 1000 µg/mL. Similarly, dose-dependent cytotoxicity response was confirmed against brine shrimp with IC50 value (45.08 µg/mL). Additionally, BPL@NiONPs exhibited stimulatory efficacy by enhancing seed germination rate at low concentrations (31.25 and 62.5 µg/mL). In conclusion, this study depicted that BPL extract has important phytochemicals with remarkable antioxidant activities, which successfully reduced and stabilized the BPL@NiONPs. The overall result of this study suggested that BPL@NiONPs could be used as nanomedicines and nanofertilizers in biomedical and agrarian fields.
Collapse
Affiliation(s)
- Siraj Uddin
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan;
- Correspondence: (J.I.); (U.M.Q.)
| | - Luqman Bin Safdar
- School of Biosciences, Sutton Bonington Campus, University of Nottingham, Sutton Bonington, Leicestershire LE12 5RD, UK;
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Saleem Ahmad
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Shantou University Medical College, Shantou 515041, China;
| | - Banzeer Ahsan Abbasi
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy;
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Umar Masood Quraihi
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
- Correspondence: (J.I.); (U.M.Q.)
| |
Collapse
|
42
|
Kolbert Z, Szőllősi R, Rónavári A, Molnár Á. Nanoforms of essential metals: from hormetic phytoeffects to agricultural potential. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1825-1840. [PMID: 34922354 PMCID: PMC8921003 DOI: 10.1093/jxb/erab547] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Vital plant functions require at least six metals (copper, iron, molybdenum, manganese, zinc, and nickel), which function as enzyme cofactors or inducers. In recent decades, rapidly evolving nanotechnology has created nanoforms of essential metals and their compounds (e.g. nZnO, nFe2O3) with a number of favourable properties over the bulk materials. The effects of nanometals on plants are concentration-dependent (hormesis) but also depend on the properties of the nanometals, the plant species, and the treatment conditions. Here, we review studies examining plant responses to essential nanometal treatments using a (multi)omics approach and emphasize the importance of gaining a holistic view of the diverse effects. Furthermore, we discuss the beneficial effects of essential nanometals on plants, which provide the basis for their application in crop production as, for example, nanopriming or nanostimulator agents, or nanofertilizers. As lower environmental impact and increased yield can be achieved by the application of essential nanometals, they support sustainable agriculture. Recent studies have actively examined the utilization of green-synthesized metal nanoparticles, which perfectly fit into the environmentally friendly trend of future agriculture. Further knowledge is required before essential nanometals can be safely applied in agriculture, but it is a promising direction that is timely to investigate.
Collapse
Affiliation(s)
- Zsuzsanna Kolbert
- Department of Plant Biology University of Szeged, Közép fasor 52, Szeged H6726, Hungary
| | - Réka Szőllősi
- Department of Plant Biology University of Szeged, Közép fasor 52, Szeged H6726, Hungary
| | - Andrea Rónavári
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H6720, Hungary
| | - Árpád Molnár
- Department of Plant Biology University of Szeged, Közép fasor 52, Szeged H6726, Hungary
| |
Collapse
|
43
|
Phase-Selective Synthesis of Anatase and Rutile TiO2 Nanocrystals and Their Impacts on Grapevine Leaves: Accumulation of Mineral Nutrients and Triggering the Plant Defense. NANOMATERIALS 2022; 12:nano12030483. [PMID: 35159827 PMCID: PMC8838626 DOI: 10.3390/nano12030483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023]
Abstract
Titanium dioxide nanocrystals (TiO2 NCs), through their photocatalytic activity, are able to generate charge carriers and induce the formation of various reactive oxygen species (ROS) in the presence of O2 and H2O. This special feature makes TiO2 an important and promising material in several industrial applications. Under appropriate antioxidant balancing, the presence of ROS is crucial in plant growth and development, therefore, the regulated ROS production through the photocatalytic activity of TiO2 NCs may be also exploited in the agricultural sector. However, the effects of TiO2 NCs on plants are not fully understood and/or phase-pure TiO2 NCs are rarely used in plant experiments. In this work, we present a phase-selective synthesis of TiO2 NCs with anatase and rutile crystal phases. The nanomaterials obtained were characterized by means of X-ray diffraction (XRD), transmission electron microscopy (TEM), diffuse reflectance UV-Vis spectroscopy, and electron paramagnetic resonance spectroscopy (EPR). In field experiments, Vitis vinifera cv. Cabernet Sauvignon leaves developed under natural sunlight were treated with aqueous dispersions of TiO2 NCs at concentrations of 0.001, 0.01, 0.1, and 1 w/v%. The effect of the applied nanocrystals was characterized via leaf photochemistry, mineral nutrient contents, and pyridoxine levels. We found that stress responses of grapevine to anatase and rutile NCs treatments are different, which can be related to the different ROS profiles of the two polymorphs. Our results indicate that TiO2 NCs may be utilized not only for direct pathogen inactivation but also for eliciting plant defense mechanisms.
Collapse
|
44
|
Silver Nanoparticles (AgNPs) in Urea Solution in Laboratory Tests and Field Experiments with Crops and Vegetables. MATERIALS 2022; 15:ma15030870. [PMID: 35160816 PMCID: PMC8837176 DOI: 10.3390/ma15030870] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
Nanotechnology and nanomaterials, including silver nanoparticles (AgNPs), are increasingly important in modern science, economics, and agriculture. Their biological activity involves influencing plant health, physiological processes, growth, and yields, although they can also be toxic in the environment. A new fertiliser was made based on a urea solution with a relatively low content of AgNPs obtained by the reduction of silver nitrate V. Laboratory tests were used to assess the effect of a fertiliser solution containing 10 ppm AgNPs on the germination of agricultural plant seeds (barley, peas, oilseed rape) and vegetables (radish, cucumber, lettuce) and its foliar application on chlorophyll content, stomatal conductance, and seedling biomass. Field experiments were conducted to assess the effect that a foliar application of 15 ppm AgNPs in working liquid had on physiological plant parameters and yields of rape and cucumber. The AgNPs in the tested fertiliser reduced infestation of the germinating seeds by pathogens and positively affected the physiological processes, productivity, and yields of plants. Plant response depended on plant species and habitat conditions. Reduced pathogen infestation of seeds, higher germination energy, increased chlorophyll content and stomatal conductance, and higher seedling masses all occurred under the influence of AgNPs, mainly in oilseed rape and cucumber, and especially under thermal stress. The beneficial effect of AgNPs on the yield of these plants occurred in years of unfavourable weather conditions. The positive agricultural test results, especially under stress conditions, indicate that fertiliser produced with AgNPs as an ingredient may reduce the use of pesticides and highly concentrated mineral fertilisers. Such a fertiliser is fully in line with the idea of sustainable agriculture. However, research on the effects that AgNPs and fertiliser have on the environment and humans should continue.
Collapse
|
45
|
Biba R, Košpić K, Komazec B, Markulin D, Cvjetko P, Pavoković D, Peharec Štefanić P, Tkalec M, Balen B. Surface Coating-Modulated Phytotoxic Responses of Silver Nanoparticles in Plants and Freshwater Green Algae. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:24. [PMID: 35009971 PMCID: PMC8746378 DOI: 10.3390/nano12010024] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 01/03/2023]
Abstract
Silver nanoparticles (AgNPs) have been implemented in a wide range of commercial products, resulting in their unregulated release into aquatic as well as terrestrial systems. This raises concerns over their impending environmental effects. Once released into the environment, they are prone to various transformation processes that modify their reactivity. In order to increase AgNP stability, different stabilizing coatings are applied during their synthesis. However, coating agents determine particle size and shape and influence their solubility, reactivity, and overall stability as well as their behavior and transformations in the biological medium. In this review, we attempt to give an overview on how the employment of different stabilizing coatings can modulate AgNP-induced phytotoxicity with respect to growth, physiology, and gene and protein expression in terrestrial and aquatic plants and freshwater algae.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Biljana Balen
- Department of Biology, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia; (R.B.); (K.K.); (B.K.); (D.M.); (P.C.); (D.P.); (P.P.Š.); (M.T.)
| |
Collapse
|
46
|
Nutrients Recovery from Dairy Wastewater by Struvite Precipitation Combined with Ammonium Sorption on Clinoptilolite. MATERIALS 2021; 14:ma14195822. [PMID: 34640218 PMCID: PMC8510139 DOI: 10.3390/ma14195822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 01/11/2023]
Abstract
Struvite precipitation from Wastewater involves an excess of ammonium to create a supersaturated initial solution. The remaining fraction can be a threat to the environment. This work combined struvite precipitation and ammonium sorption using natural zeolite to decrease the ammonium level in the effluent. Two approaches of estimation of feed sample doses were used. One consisted of gradient experiments for ammonium precipitation to the asymptotic level and was combined with clinoptilolite to lower the ammonium level in the effluent. This approach used doses of 0.05:1.51:0.61:1 of Ca:Mg:NH4+:PO43− mole ratios, respectively. In contrast, three level design with narrowed NH4+:PO43− range reached 0.25:1.51:0.8:1 for Ca:Mg:NH4+:PO43− mole ratios. The addition of zeolite decreased effluent ammonium concentration. In both ways, the P and N recoveries were higher than 94% and 72%, respectively. The complexity of the precipitation mixture decreased the ammonium sorption capacity (Qe) of clinoptilolite from Qe of 0.52 to 0.10 meq∙g−1 in single and complex solutions, respectively. Thermodynamically, the addition of 1.5 % of clinoptilolite changed the struvite precipitation spontaneity from ∆G of −5.87 to −5.42 kJ·mol−1 and from 9.66 to 9.56 kJ·mol−1 for gradient and three level experimental procedures, respectively. Thus, clinoptilolite demonstrated a positive effect on the struvite precipitation process and its environmental impact.
Collapse
|
47
|
Alkhatib R, Alkhatib B, Abdo N. Effect of Fe 3O 4 nanoparticles on seed germination in tobacco. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:53568-53577. [PMID: 34031836 DOI: 10.1007/s11356-021-14541-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Many studies on the toxicity of nanoparticles (NPs) have reported different levels of toxicity for various types of NPs. This study aimed to examine the morpho-ultrastructural impact of iron oxide (Fe3O4) NPs on seed germination in tobacco (Nicotiana tabacum var. Turkish) using different sizes and concentrations of nanoparticles. Seeds were allowed to germinate in the presence of (Fe3O4) NPs of three different sizes (5, 10, and 20 nm) at three different concentrations 3, 10, and 30 mg/L for each size. Seeds were assessed using light and transmission microscopy. Radical lengths and seed germination rate were significantly affected (positively or negatively) in all NPs-treated seeds compared to control seeds. The radical lengths in 5 nm-treated seeds (30 mg/L concentration) and 10 nm-treated seeds (10 and 30 mg/L concentrations) were significantly shorter than control seeds. In contrast, the radical lengths in 10 nm-treated seeds (3 mg/L concentration) and 20 nm-treated seeds (10 mg/L concentration) were significantly longer than control seeds. Most NPs-treated seeds exhibited significant higher seed germination except for seeds treated with 5 nm NPs (3 mg/L concentration). Moreover, thick and thin micrographs of radicles and leaflets of 5 nm NPs-treated seeds (30 mg/L concentration) and 10 nm NPs (30 mg/L concentration) showed structural and ultrastructural deformation. Thus, these findings confirm that the toxicity and the bioaccumulation of (Fe3O4) NPs were size and concentration dependent.
Collapse
Affiliation(s)
- Rami Alkhatib
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, 22110, Jordan.
| | - Batool Alkhatib
- Molecular Biology Program, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Nour Abdo
- Department of Public Health, Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
48
|
Tymoszuk A. Silver Nanoparticles Effects on In Vitro Germination, Growth, and Biochemical Activity of Tomato, Radish, and Kale Seedlings. MATERIALS 2021; 14:ma14185340. [PMID: 34576564 PMCID: PMC8468885 DOI: 10.3390/ma14185340] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 12/02/2022]
Abstract
The interactions between nanoparticles and plant cells are still not sufficiently understood, and studies related to this subject are of scientific and practical importance. Silver nanoparticles (AgNPs) are one of the most commonly produced and used nanomaterials. This study aimed to investigate the influence of AgNPs applied at the concentrations of 0, 50, and 100 mg·L−1 during the process of in vitro germination as well as the biometric and biochemical parameters of developed seedlings in three vegetable species: Solanum lycopersicum L. ‘Poranek’, Raphanus sativus L. var. sativus ‘Ramona’, and Brassica oleracea var. sabellica ‘Nero di Toscana’. The application of AgNPs did not affect the germination efficiency; however, diverse results were reported for the growth and biochemical activity of the seedlings, depending on the species tested and the AgNPs concentration. Tomato seedlings treated with nanoparticles, particularly at 100 mg·L−1, had shorter shoots with lower fresh and dry weights and produced roots with lower fresh weight. Simultaneously, at the biochemical level, a decrease in the content of chlorophylls and carotenoids and an increase in the anthocyanins content and guaiacol peroxidase (GPOX) activity were reported. AgNPs-treated radish plants had shorter shoots of higher fresh and dry weight and longer roots with lower fresh weight. Treatment with 50 mg·L−1 and 100 mg·L−1 resulted in the highest and lowest accumulation of chlorophylls and carotenoids in the leaves, respectively; however, seedlings treated with 100 mg·L−1 produced less anthocyanins and polyphenols and exhibited lower GPOX activity. In kale, AgNPs-derived seedlings had a lower content of chlorophylls, carotenoids, and anthocyanins but higher GPOX activity of and were characterized by higher fresh and dry shoot weights and higher heterogeneous biometric parameters of the roots. The results of these experiments may be of great significance for broadening the scope of knowledge on the influence of AgNPs on plant cells and the micropropagation of the vegetable species. Future studies should be aimed at testing lower or even higher concentrations of AgNPs and other NPs and to evaluate the genetic stability of NPs-treated vegetable crops and their yielding efficiency.
Collapse
Affiliation(s)
- Alicja Tymoszuk
- Laboratory of Ornamental Plants and Vegetable Crops, Faculty of Agriculture and Biotechnology, Bydgoszcz University of Science and Technology, Bernardyńska 6, 85-029 Bydgoszcz, Poland
| |
Collapse
|
49
|
Shelar A, Singh AV, Maharjan RS, Laux P, Luch A, Gemmati D, Tisato V, Singh SP, Santilli MF, Shelar A, Chaskar M, Patil R. Sustainable Agriculture through Multidisciplinary Seed Nanopriming: Prospects of Opportunities and Challenges. Cells 2021; 10:2428. [PMID: 34572078 PMCID: PMC8472472 DOI: 10.3390/cells10092428] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 11/18/2022] Open
Abstract
The global community decided in 2015 to improve people's lives by 2030 by setting 17 global goals for sustainable development. The second goal of this community was to end hunger. Plant seeds are an essential input in agriculture; however, during their developmental stages, seeds can be negatively affected by environmental stresses, which can adversely affect seed vigor, seedling establishment, and crop production. Seeds resistant to high salinity, droughts and climate change can result in higher crop yield. The major findings suggested in this review refer nanopriming as an emerging seed technology towards sustainable food amid growing demand with the increasing world population. This novel growing technology could influence the crop yield and ensure the quality and safety of seeds, in a sustainable way. When nanoprimed seeds are germinated, they undergo a series of synergistic events as a result of enhanced metabolism: modulating biochemical signaling pathways, trigger hormone secretion, reduce reactive oxygen species leading to improved disease resistance. In addition to providing an overview of the challenges and limitations of seed nanopriming technology, this review also describes some of the emerging nano-seed priming methods for sustainable agriculture, and other technological developments using cold plasma technology and machine learning.
Collapse
Affiliation(s)
- Amruta Shelar
- Department of Technology, Savitribai Phule Pune University, Pune 411007, India;
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (R.S.M.); (P.L.); (A.L.)
| | - Romi Singh Maharjan
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (R.S.M.); (P.L.); (A.L.)
| | - Peter Laux
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (R.S.M.); (P.L.); (A.L.)
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany; (R.S.M.); (P.L.); (A.L.)
| | - Donato Gemmati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (D.G.); (V.T.)
| | - Veronica Tisato
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (D.G.); (V.T.)
| | | | | | - Akanksha Shelar
- Department of Microbiology, Savitribai Phule Pune University, Pune 411007, India;
| | - Manohar Chaskar
- Ramkrishna More Arts, Commerce and Science College, Pune 411044, India;
| | - Rajendra Patil
- Department of Biotechnology, Savitribai Phule Pune University, Pune 411007, India
| |
Collapse
|
50
|
Kalaba MH, Moghannem SA, El-Hawary AS, Radwan AA, Sharaf MH, Shaban AS. Green Synthesized ZnO Nanoparticles Mediated by Streptomyces plicatus: Characterizations, Antimicrobial and Nematicidal Activities and Cytogenetic Effects. PLANTS (BASEL, SWITZERLAND) 2021; 10:1760. [PMID: 34579293 PMCID: PMC8466497 DOI: 10.3390/plants10091760] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/20/2023]
Abstract
Zinc oxide nanoparticles (ZnO-NPs) are regarded as one of the most promising kinds of materials in a variety of fields, including agriculture. Therefore, this study aimed to biosynthesize and characterize ZnO-NPs and evaluate their different biological activities. Seven isolates of actinomycetes were obtained and screened for ZnO-NPs synthesis. The isolate MK-104 was chosen and identified as the Streptomyces plicatus MK-104 strain. The biosynthesized ZnO-NPs exhibited an absorbance peak at 350 nm and were spherical in shape with an average size of 21.72 ± 4.27 nm under TEM. XRD and DLS methods confirmed these results. The biosynthesized ZnO-NPs demonstrated activity against plant pathogenic microbes such as Erwinia amylovora, Aspergillus flavus, Aspergillus niger, Fusarium oxysporum, Fusarium moniliform and Alternaria alternata, with MIC values ranging from 15.6 to 500 µg/mL. Furthermore, ZnO-NPs had a significant effect on Meloidogyne incognita, with death percentages of 88.2, 93.4 and 96.72% after 24, 48 and 72 h of exposure, respectively. Vicia faba seeds were treated with five concentrations of ZnO-NPs (12.5, 25, 50, 100 and 200 µg/mL). Low-moderate ZnO-NP concentrations (12.5-50 µg/mL) were shown to promote seed germination and seedling development, while the mitotic index (MI) decreased as the dosage of ZnO-NPs increased. Micronuclei (MNs) and the chromosomal abnormality index increased as well.
Collapse
Affiliation(s)
| | - Saad A. Moghannem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt; (M.H.K.); (A.S.E.-H.); (A.A.R.); (M.H.S.); or
| | | | | | | | | |
Collapse
|