1
|
Brill EN, Link NG, Jackson MR, Alvi AF, Moehlenkamp JN, Beard MB, Simons AR, Carson LC, Li R, Judd BT, Brasseale MN, Berkman EP, Park RK, Cordova-Hernandez S, Hoff RY, Yager CE, Modelski MC, Nenadovich M, Sisodia D, Reames CJ, Geranios AG, Berthrong ST, Wilson AM, Tietje AH, Stobart CC. Evaluation of the Therapeutic Potential of Traditionally-Used Natural Plant Extracts to Inhibit Proliferation of a HeLa Cell Cancer Line and Replication of Human Respiratory Syncytial Virus (hRSV). BIOLOGY 2024; 13:696. [PMID: 39336123 PMCID: PMC11429219 DOI: 10.3390/biology13090696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 09/30/2024]
Abstract
Traditional approaches employing natural plant products to treat a wide array of ailments have been documented and described for thousands of years. However, there remains limited scientific study of the therapeutic potential or effectiveness of ethnobotanical applications. Increases in the incidence of cancer and emerging infectious diseases demonstrate a growing need for advances in the development of therapeutic options. In this study, we evaluate the therapeutic potential of aqueous extracts prepared from four plants, purple aster (Symphyotrichum novae-angliae (L.) Nemsom), common sage (Salvia lyrata (L.)), northern spicebush (Lindera benzoin (L.) Blume), and lamb's ear (Stachys byzantina (K.) Koch)) traditionally used in Native American medicine in Indiana, USA. Using a combination of cytotoxicity assays, immunofluorescence microscopy, and antiviral assays, we found that sage and spicebush extracts exhibit cytotoxic and antiproliferative effects on HeLa cell proliferation and that sage, spicebush, and aster extracts were capable of significantly inhibiting human respiratory syncytial virus (hRSV), a major respiratory pathogen of infants and the elderly. Chemical analysis of the four extracts identified four major compounds which were subsequently evaluated to identify the responsible constituents in the extracts. While none of the identified compounds were shown to induce significant impacts on HeLa cell proliferation, two of the compounds, (1S)-(-)-Borneol and 5-(hydroxymethyl)-furfural, identified in sage and spicebush, respectively, were shown to have antiviral activities. Our data suggest that several of the extracts tested exhibited either anti-proliferative or antiviral activity supporting future further analysis.
Collapse
Affiliation(s)
- Ellie N. Brill
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Natalie G. Link
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Morgan R. Jackson
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Alea F. Alvi
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Jacob N. Moehlenkamp
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Morgan B. Beard
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Adam R. Simons
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Linden C. Carson
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Ray Li
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Breckin T. Judd
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Max N. Brasseale
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Emily P. Berkman
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Riley K. Park
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Sedna Cordova-Hernandez
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Rebecca Y. Hoff
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Caroline E. Yager
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Meredith C. Modelski
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Milica Nenadovich
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Dhruvi Sisodia
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Clayton J. Reames
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Andreas G. Geranios
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Sean T. Berthrong
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Anne M. Wilson
- Department of Chemistry and Biochemistry, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA;
| | - Ashlee H. Tietje
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
| | - Christopher C. Stobart
- Department of Biological Sciences, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA (S.T.B.); (A.H.T.)
- Interdisciplinary Program in Public Health, Butler University, 4600 Sunset Ave., Indianapolis, IN 46208, USA
| |
Collapse
|
2
|
Lee JA, Gu MJ, Lee YR, Kim Y, Choi I, Kim D, Ha SK. Lindera obtusiloba Blume Alleviates Non-Alcoholic Fatty Liver Disease Promoted by N ε-(carboxymethyl)lysine. Nutrients 2024; 16:2330. [PMID: 39064772 PMCID: PMC11280000 DOI: 10.3390/nu16142330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major issue because it is closely associated with metabolic diseases. Advanced glycation end products (AGEs) are implicated as risk factors for steatosis during NAFLD progression. AGEs influence NAFLD progression through a receptor-independent pathway involving AGE cross-link formation and a receptor-dependent pathway that binds to receptors like receptors for advanced glycation end products (RAGE). The objectives of this study are to examine the effect of Lindera obtusiloba Blume (LO) on NAFLD promoted by Nε-(carboxymethyl)lysine (CML), one of the most common dietary AGEs. The anti-glycation effects of LO were evaluated by inhibiting the AGEs formation and AGEs-collagen cross-links breaking. The efficacy of LO against NAFLD promoted by CML was assessed using both in vitro and in vivo models. NAFLD was induced in mice by feeding a high-fat diet and orally administering CML over a period of 12 weeks, and the effects of LO on lipid metabolism and its regulatory mechanisms were investigated. LO showed the effect of inhibited AGEs formation and breakage, and collagen cross-linking. Fed a high-fat diet with administered CML by gavage, LO administration resulted in a reduction in body weight, fat mass, serum triglycerides, total cholesterol, and low-density lipoprotein cholesterol levels. LO reduced hepatic CML accumulation and RAGE expression in mice fed a high-fat diet and orally administered CML. LO alleviated hepatic steatosis accompanied by lipid accumulation and histological damage by suppressing the expression of sterol regulatory element-binding protein 1c, carbohydrate response element binding protein, fatty acid synthase, stearoyl-CoA desaturase1, tumor necrosis factor-α, and interleukin-1β. LO alleviated the MAPK/NF-κB expression by attenuating CML and RAGE expression. Taken together, our results demonstrate that LO alleviates the progression of NAFLD by lowering the levels of AGEs by downregulating CML/RAGE expression.
Collapse
Affiliation(s)
- Jin-Ah Lee
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (M.J.G.); (Y.R.L.); (Y.K.); (I.C.)
| | - Min Ji Gu
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (M.J.G.); (Y.R.L.); (Y.K.); (I.C.)
| | - Yu Ra Lee
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (M.J.G.); (Y.R.L.); (Y.K.); (I.C.)
| | - Yoonsook Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (M.J.G.); (Y.R.L.); (Y.K.); (I.C.)
| | - Inwook Choi
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (M.J.G.); (Y.R.L.); (Y.K.); (I.C.)
| | - Donghwan Kim
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (M.J.G.); (Y.R.L.); (Y.K.); (I.C.)
| | - Sang Keun Ha
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Republic of Korea; (J.-A.L.); (M.J.G.); (Y.R.L.); (Y.K.); (I.C.)
- Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Oh ES, Ro H, Ryu HW, Song YN, Park JY, Kim N, Kim HY, Oh SM, Lee SY, Kim DY, Kim S, Hong ST, Kim MO, Lee SU. Methyl lucidone inhibits airway inflammatory response by reducing TAK1 activity in human bronchial epithelial NCI-H292 cells. Heliyon 2023; 9:e20154. [PMID: 37809903 PMCID: PMC10559928 DOI: 10.1016/j.heliyon.2023.e20154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Background Methyl lucidone (ML), a methyl derivative of lucidone, has anti-inflammatory properties. However, the molecular mechanisms that reduce the inflammatory effect of ML in human lung epithelial cells remain unkown. This study aimed to elucidate the molecular mechanisms underlying the anti-inflammatory effect of ML. Methods Four compounds (ML, methyl linderone, kanakugiol, and linderone) from Lindera erythrocarpa Makino were evaluated for their ability to reduce MUC5AC secretion levels in phorbol-12-myristate-13-acetate (PMA)-stimulated NCI-H292 cells using ELISA. The expression and secretion levels of inflammatory response-related proteins were analyzed using quantitative reverse transcription-PCR, ELISA, and western blotting. To determine whether ML directly regulates TGF-β-activated kinase 1 (TAK1), we performed an in vitro kinase assay. Results ML treatment effectively reduced the levels of inflammatory cytokines, including interleukin-1β and TNF-α, increased by stimulation. Furthermore, ML downregulated the pathway cascade of both IκB kinase (IKK)/NF-κB and p38 mitogen-activated protein (MAP) kinase/CREB by inhibiting the upstream kinase TAK1. An in vitro kinase analysis confirmed that ML treatment significantly reduced the kinase activity of TAK1. Conclusion ML pretreatment repressed the PMA-stimulated inflammation reaction by reducing the TAK1-mediated IKK/NF-κB and p38 MAP kinase/CREB signaling. These findings suggest that ML may improve respiratory health and can be used as a dietary supplement or functional food to prevent inflammatory lung diseases.
Collapse
Affiliation(s)
- Eun Sol Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyung Won Ryu
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Yu Na Song
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ji-Yoon Park
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
- Department of Anatomy and Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Namho Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
- Department of Anatomy and Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Hae-Young Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Seon Min Oh
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Su-Yeon Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Doo-Young Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Sooil Kim
- Department of Anatomy and Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Sung-Tae Hong
- Department of Anatomy and Cell Biology, Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Mun-Ock Kim
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Su Ui Lee
- Natural Product Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Chungbuk, 28116, Republic of Korea
| |
Collapse
|
4
|
Ozelin SD, Senedese JM, Alves JM, Munari CC, Costa JDCD, Resende FA, Campos DL, Lima IMDS, Andrade AF, Varanda EA, Bastos JK, Tavares DC. Preventive activity of Copaifera langsdorffii Desf. leaves extract and its major compounds, afzelin and quercitrin, on DNA damage in in vitro and in vivo models. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:569-581. [PMID: 33730993 DOI: 10.1080/15287394.2021.1898505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Copaifera langsdorffii Desf. is a plant found in South America, especially in Brazil. Oleoresin and the leaves of this plant is used as a popular medicinal agent. However, few studies on the chemical composition of aerial parts and related biological activities are known. This study aimed to examine the cytotoxic, genotoxic, and antigenotoxic potential of C. langsdorffii aerial parts hydroalcoholic extract (CLE) and two of its major compounds afzelin and quercitrin. The cytotoxic and antigenotoxic potential of CLE was determined as follows: 1) against genotoxicity induced by doxorubicin (DXR) or methyl methanesulfonate (MMS) in V79 cells; 2) by direct and indirect-acting mutagens in Salmonella typhimurium strains; and 3) by MMS in male Swiss mice. The protective effects of afzelin and quercitrin against DXR or MMS were also evaluated in V79 and HepG2 cells. CLE was cytotoxic as evidenced by clonogenic efficiency assay. Further, CLE did not induce a significant change in frequencies of chromosomal aberrations and micronuclei; as well as number of revertants in the Ames test demonstrating absence of genotoxicity. In contrast, CLE was found to be antigenotoxic in mammalian cells. The results also showed that CLE exerted inhibitory effect against indirect-acting mutagens in the Ames test. Afzelin and quercitrin did not reduce genotoxicity induced by DXR or MMS in V79 cells. However, treatments using afzelin and quercitrin decreased MMS-induced genotoxicity in HepG2 cells. The antigenotoxic effect of CLE observed in this study may be partially attributed to the antioxidant activity of the combination of major components afzelin and quercitrin.
Collapse
Affiliation(s)
- Saulo Duarte Ozelin
- Laboratório De Mutagênese, Universidade De Franca, Franca, São Paulo, Brazil
| | | | | | | | | | - Flávia Aparecida Resende
- Faculdade De Ciências Farmacêuticas De Araraquara, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Débora Leite Campos
- Faculdade De Ciências Farmacêuticas De Araraquara, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil
| | | | | | - Eliana Aparecida Varanda
- Faculdade De Ciências Farmacêuticas De Araraquara, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil
| | - Jairo Kenupp Bastos
- Facudade De Ciências Farmacêuticas De Ribeirão Preto, Universidade De São Paulo, São Paulo, Brazil
| | | |
Collapse
|
5
|
Mitigating Effect of Lindera obtusiloba Blume Extract on Neuroinflammation in Microglial Cells and Scopolamine-Induced Amnesia in Mice. Molecules 2021; 26:molecules26102870. [PMID: 34066108 PMCID: PMC8151320 DOI: 10.3390/molecules26102870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Lindera obtusiloba Blume (family, Lauraceae), native to Northeast Asia, has been used traditionally in the treatment of trauma and neuralgia. In this study, we investigated the neuroinflammatory effect of methanol extract of L. obtusiloba stem (LOS-ME) in a scopolamine-induced amnesia model and lipopolysaccharide (LPS)-stimulated BV2 microglia cells. LOS-ME downregulated the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, inflammatory cytokines, and inhibited the phosphorylation of nuclear factor kappa-B (NF-ĸB) and extracellular signal-regulated kinase (ERK) in LPS-stimulated BV2 cells. Male C57/BL6 mice were orally administered 20 and 200 mg/kg of LOS-ME for one week, and 2 mg/kg of scopolamine was administered intraperitoneally on the 8th day. In vivo behavioral experiments (Y-maze and Morris water maze test) confirmed that LOS-ME alleviated cognitive impairments induced by scopolamine and the amount of iNOS expression decreased in the hippocampus of the mouse brain. Microglial hyper-activation was also reduced by LOS-ME pretreatment. These findings suggest that LOS-ME might have potential in the treatment for cognitive improvement by regulating neuroinflammation.
Collapse
|