1
|
Porter CM, Qian GC, Grindel SH, Hughes AJ. Highly parallel production of designer organoids by mosaic patterning of progenitors. Cell Syst 2024; 15:649-661.e9. [PMID: 38981488 PMCID: PMC11257788 DOI: 10.1016/j.cels.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 04/09/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
Organoids derived from human stem cells are a promising approach for disease modeling, regenerative medicine, and fundamental research. However, organoid variability and limited control over morphological outcomes remain as challenges. One open question is the extent to which engineering control over culture conditions can guide organoids to specific compositions. Here, we extend a DNA "velcro" cell patterning approach, precisely controlling the number and ratio of human induced pluripotent stem cell-derived progenitors contributing to nephron progenitor (NP) organoids and mosaic NP/ureteric bud (UB) tip cell organoids within arrays of microwells. We demonstrate long-term control over organoid size and morphology, decoupled from geometric constraints. We then show emergent trends in organoid tissue proportions that depend on initial progenitor cell composition. These include higher nephron and stromal cell representation in mosaic NP/UB organoids vs. NP-only organoids and a "goldilocks" initial cell ratio in mosaic organoids that optimizes the formation of proximal tubule structures.
Collapse
Affiliation(s)
- Catherine M Porter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Precision Engineering for Health (CPE4H), University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Grace C Qian
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Samuel H Grindel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Precision Engineering for Health (CPE4H), University of Pennsylvania, Philadelphia, PA 19104, USA; Materials Research Science and Engineering Center (MRSEC), University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex J Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Precision Engineering for Health (CPE4H), University of Pennsylvania, Philadelphia, PA 19104, USA; Materials Research Science and Engineering Center (MRSEC), University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Shi Y, Tao X, Du P, Pasic P, Esser L, Chen HY, Thissen H, Wang PY. A surface-independent bioglue using photo-crosslinkable benzophenone moiety. RSC Adv 2024; 14:12966-12976. [PMID: 38655476 PMCID: PMC11036370 DOI: 10.1039/d4ra01866d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
Surface coating technology is broadly demanded across various fields, including marine and biomedical materials; therefore, a facile and versatile approach is desired. This study proposed an attractive surface coating strategy using photo-crosslinkable benzophenone (BP) moiety for biomaterials application. BP-containing "bioglue" polymer can effectively crosslink with all kinds of surfaces and biomolecules. Upon exposure to ultraviolet (UV) light, free radical reaction from the BP glue facilitates the immobilization of diverse molecules onto different substrates in a straightforward and user-friendly manner. Through either one-step, mixing the bioglue with targeted biomolecules, or two-step methods, pre-coating the bioglue and then adding targeted biomolecules, polyacrylic acid (PAA), cyclic RGD-containing peptides, and proteins (gelatin, collagen, and fibronectin) were successfully immobilized on substrates. After drying the bioglue, targeted biomolecules can still be immobilized on the surfaces preserving their bioactivity. Cell culture on biomolecule-immobilized surfaces using NIH 3T3 fibroblasts and human bone marrow stem cells (hBMSCs) showed significant improvement of cell adhesion and activity compared to the unmodified control in serum-free media after 24 hours. Furthermore, hBMSCs on the fibronectin-immobilized surface showed an increased calcium deposition after 21 days of osteogenic differentiation, suggesting that the immobilized fibronectin is highly bioactive. Given the straightforward protocol and substrate-independent bioglue, the proposed coating strategy is promising in broad-range fields.
Collapse
Affiliation(s)
- Yue Shi
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University Wenzhou Zhejiang 325000 China
| | - Xuelian Tao
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Paul Pasic
- CSIRO Manufacturing Research Way Clayton Victoria 3168 Australia
| | - Lars Esser
- CSIRO Manufacturing Research Way Clayton Victoria 3168 Australia
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, National Taiwan University Taipei Taiwan
| | - Helmut Thissen
- CSIRO Manufacturing Research Way Clayton Victoria 3168 Australia
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University Wenzhou Zhejiang 325000 China
| |
Collapse
|
3
|
Porter CM, Qian GC, Grindel SH, Hughes AJ. Highly-parallel production of designer organoids by mosaic patterning of progenitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.564017. [PMID: 37961546 PMCID: PMC10634829 DOI: 10.1101/2023.10.25.564017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Human organoids are a promising approach for disease modeling and regenerative medicine. However, organoid variability and limited control over morphological outcomes remain significant challenges. Here we extend a DNA 'velcro' cell patterning approach, precisely controlling the number and ratio of human stem cell-derived progenitors contributing to nephron and mosaic nephron/ureteric bud organoids within arrays of microwells. We demonstrate long-term control over organoid size and morphology, decoupled from geometric constraints.
Collapse
Affiliation(s)
- Catherine M. Porter
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Grace C. Qian
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Samuel H. Grindel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Alex J. Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| |
Collapse
|
4
|
Shi Y, Yang P, Lei R, Liu Z, Dong X, Tao X, Chu X, Wang ZL, Chen X. Eye tracking and eye expression decoding based on transparent, flexible and ultra-persistent electrostatic interface. Nat Commun 2023; 14:3315. [PMID: 37286541 DOI: 10.1038/s41467-023-39068-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Eye tracking provides valuable insight for analyzing visual attention and underlying thinking progress through the observation of eye movements. Here, a transparent, flexible and ultra-persistent electrostatic sensing interface is proposed for realizing active eye tracking (AET) system based on the electrostatic induction effect. Through a triple-layer structure combined with a dielectric bilayer and a rough-surface Ag nanowire (Ag NW) electrode layer, the inherent capacitance and interfacial trapping density of the electrostatic interface has been strongly enhanced, contributing to an unprecedented charge storage capability. The electrostatic charge density of the interface reached 1671.10 μC·m-2 with a charge-keeping rate of 96.91% after 1000 non-contact operation cycles, which can finally realize oculogyric detection with an angular resolution of 5°. Thus, the AET system enables real-time decoding eye movements for customer preference recording and eye-controlled human-computer interaction, supporting its limitless potentiality in commercial purpose, virtual reality, human computer interactions and medical monitoring.
Collapse
Affiliation(s)
- Yuxiang Shi
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Peng Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Rui Lei
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Zhaoqi Liu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xuanyi Dong
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xinglin Tao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiangcheng Chu
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Xiangyu Chen
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China.
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
5
|
Moon SH, Hwang HJ, Jeon HR, Park SJ, Bae IS, Yang YJ. Photocrosslinkable natural polymers in tissue engineering. Front Bioeng Biotechnol 2023; 11:1127757. [PMID: 36970625 PMCID: PMC10037533 DOI: 10.3389/fbioe.2023.1127757] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Natural polymers have been widely used in scaffolds for tissue engineering due to their superior biocompatibility, biodegradability, and low cytotoxicity compared to synthetic polymers. Despite these advantages, there remain drawbacks such as unsatisfying mechanical properties or low processability, which hinder natural tissue substitution. Several non-covalent or covalent crosslinking methods induced by chemicals, temperatures, pH, or light sources have been suggested to overcome these limitations. Among them, light-assisted crosslinking has been considered as a promising strategy for fabricating microstructures of scaffolds. This is due to the merits of non-invasiveness, relatively high crosslinking efficiency via light penetration, and easily controllable parameters, including light intensity or exposure time. This review focuses on photo-reactive moieties and their reaction mechanisms, which are widely exploited along with natural polymer and its tissue engineering applications.
Collapse
Affiliation(s)
- Seo Hyung Moon
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Hye Jin Hwang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Hye Ryeong Jeon
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Sol Ji Park
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - In Sun Bae
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
| | - Yun Jung Yang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, Republic of Korea
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
- *Correspondence: Yun Jung Yang,
| |
Collapse
|
6
|
Sójka O, van der Mei HC, van Rijn P, Gagliano MC. Zwitterionic poly(sulfobetaine methacrylate)-based hydrogel coating for drinking water distribution systems to inhibit adhesion of waterborne bacteria. Front Bioeng Biotechnol 2023; 11:1066126. [PMID: 36896012 PMCID: PMC9989184 DOI: 10.3389/fbioe.2023.1066126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/08/2023] [Indexed: 02/25/2023] Open
Abstract
Presence of biofilms in drinking water distribution systems (DWDS) can be a nuisance, leading to several operational and maintenance issues (i.e., increased secondary disinfectants demand, pipe damage or increased flow resistance), and so far, no single control practice was found to be sufficiently effective. Here, we propose poly (sulfobetaine methacrylate) (P(SBMA))-based hydrogel coating application as a biofilm control strategy in DWDS. The P(SBMA) coating was synthetized through photoinitiated free radical polymerization on polydimethylsiloxane with different combinations of SBMA as a monomer, and N, N'-methylenebis (acrylamide) (BIS) as a cross-linker. The most stable coating in terms of its mechanical properties was obtained using 20% SBMA with a 20:1 SBMA:BIS ratio. The coating was characterized using Scanning Electron Microscopy, Energy Dispersive X-Ray Spectroscopy, and water contact angle measurements. The anti-adhesive performance of the coating was evaluated in a parallel-plate flow chamber system against adhesion of four bacterial strains representing genera commonly identified in DWDS biofilm communities, Sphingomonas and Pseudomonas. The selected strains exhibited varying adhesion behaviors in terms of attachment density and bacteria distribution on the surface. Despite these differences, after 4 h, presence of the P(SBMA)-based hydrogel coating significantly reduced the number of adhering bacteria by 97%, 94%, 98% and 99%, for Sphingomonas Sph5, Sphingomonas Sph10, Pseudomonas extremorientalis and Pseudomonas aeruginosa, respectively, compared to non-coated surfaces. These findings motivate further research into a potential application of a hydrogel anti-adhesive coating as a localized biofilm control strategy in DWDS, especially on materials known to promote excessive biofilm growth.
Collapse
Affiliation(s)
- Olga Sójka
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands.,Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Patrick van Rijn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Maria Cristina Gagliano
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, Netherlands
| |
Collapse
|
7
|
Zhang B, Song L, Feng C, Tian W. Study on Synthesis, Optical properties and Application of Benzophenone derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202203948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Bianxiang Zhang
- School of Chemistry and Chemical Engineering Shanxi University 030006 Taiyuan China
| | - Lu Song
- School of Chemistry and Chemical Engineering Shanxi University 030006 Taiyuan China
| | - Chao Feng
- School of Chemistry and Chemical Engineering Shanxi University 030006 Taiyuan China
| | - Wenjuan Tian
- Nanocluster Laboratory Institute of Molecular Science Shanxi University 030006 Taiyuan China
| |
Collapse
|
8
|
Alavi SE, Panah N, Page F, Gholami M, Dastfal A, Sharma LA, Ebrahimi Shahmabadi H. Hydrogel-based therapeutic coatings for dental implants. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Gomes M, Gomes LC, Teixeira-Santos R, Pereira MF, Soares OS, Mergulhão FJ. Carbon nanotube-based surfaces: Effect on the inhibition of single- and dual-species biofilms of Escherichia coli and Enterococcus faecalis. RESULTS IN SURFACES AND INTERFACES 2022. [DOI: 10.1016/j.rsurfi.2022.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Jiang B, White A, Ou W, Van Belleghem S, Stewart S, Shamul JG, Rahaman SO, Fisher JP, He X. Noncovalent reversible binding-enabled facile fabrication of leak-free PDMS microfluidic devices without plasma treatment for convenient cell loading and retrieval. Bioact Mater 2022; 16:346-358. [PMID: 35386332 PMCID: PMC8965690 DOI: 10.1016/j.bioactmat.2022.02.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/25/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022] Open
Abstract
The conventional approach for fabricating polydimethylsiloxane (PDMS) microfluidic devices is a lengthy and inconvenient procedure and may require a clean-room microfabrication facility often not readily available. Furthermore, living cells can't survive the oxygen-plasma and high-temperature-baking treatments required for covalent bonding to assemble multiple PDMS parts into a leak-free device, and it is difficult to disassemble the devices because of the irreversible covalent bonding. As a result, seeding/loading cells into and retrieving cells from the devices are challenging. Here, we discovered that decreasing the curing agent for crosslinking the PDMS prepolymer increases the noncovalent binding energy of the resultant PDMS surfaces without plasma or any other treatment. This enables convenient fabrication of leak-free microfluidic devices by noncovalent binding for various biomedical applications that require high pressure/flow rates and/or long-term cell culture, by simply hand-pressing the PDMS parts without plasma or any other treatment to bind/assemble. With this method, multiple types of cells can be conveniently loaded into specific areas of the PDMS parts before assembly and due to the reversible nature of the noncovalent bonding, the assembled device can be easily disassembled by hand peeling for retrieving cells. Combining with 3D printers that are widely available for making masters to eliminate the need of photolithography, this facile yet rigorous fabrication approach is much faster and more convenient for making PDMS microfluidic devices than the conventional oxygen plasma-baking-based irreversible covalent bonding method. The stability of noncovalent PDMS-PDMS binding is dependent on the binding energy instead of the binding strength. The noncovalent binding of a special formulation of PDMS is sufficient for reversible assembly of leak-free microfluidic devices. The noncovalent binding method enables loading multiple types of cells into PDMS parts before assembling into the final device. The PDMS device can be easily dissembled due to the reversible nature of the noncovalent binding for retrieving cells.
Collapse
Affiliation(s)
- Bin Jiang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Alisa White
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Wenquan Ou
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Sarah Van Belleghem
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - James G. Shamul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Shaik O. Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
- Corresponding author. Fischell Department of Bioengineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
11
|
Ficai D, Gheorghe M, Dolete G, Mihailescu B, Svasta P, Ficai A, Constantinescu G, Andronescu E. Microelectromechanical Systems Based on Magnetic Polymer Films. MICROMACHINES 2022; 13:mi13030351. [PMID: 35334643 PMCID: PMC8952241 DOI: 10.3390/mi13030351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023]
Abstract
Microelectromechanical systems (MEMS) have been increasingly used worldwide in a wide range of applications, including high tech, energy, medicine or environmental applications. Magnetic polymer composite films have been used extensively in the development of the micropumps and valves, which are critical components of the microelectromechanical systems. Based on the literature survey, several polymers and magnetic micro and nanopowders can be identified and, depending on their nature, ratio, processing route and the design of the device, their performances can be tuned from simple valves and pumps to biomimetic devices, such as, for instance, hearth ventricles. In many such devices, polymer magnetic films are used, the disposal of the magnetic component being either embedded into the polymer or coated on the polymer. One or more actuation zones can be used and the flow rate can be mono-directional or bi-directional depending on the design. In this paper, we review the main advances in the development of these magnetic polymer films and derived MEMS: microvalve, micropump, micromixer, microsensor, drug delivery micro-systems, magnetic labeling and separation microsystems, etc. It is important to mention that these MEMS are continuously improving from the point of view of performances, energy consumption and actuation mechanism and a clear tendency in developing personalized treatment. Due to the improved energy efficiency of special materials, wearable devices are developed and be suitable for medical applications.
Collapse
Affiliation(s)
- Denisa Ficai
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania;
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.D.); (E.A.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Marin Gheorghe
- Center for Technological Electronics and Interconnection Techniques, University Politehnica of Bucharest, Bulevardul Iuliu Maniu, 061071 Bucharest, Romania; (M.G.); (B.M.); (P.S.)
- NANOM—MEMS, George Cosbuc 9, 505400 Rasnov, Romania
| | - Georgiana Dolete
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.D.); (E.A.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Bogdan Mihailescu
- Center for Technological Electronics and Interconnection Techniques, University Politehnica of Bucharest, Bulevardul Iuliu Maniu, 061071 Bucharest, Romania; (M.G.); (B.M.); (P.S.)
| | - Paul Svasta
- Center for Technological Electronics and Interconnection Techniques, University Politehnica of Bucharest, Bulevardul Iuliu Maniu, 061071 Bucharest, Romania; (M.G.); (B.M.); (P.S.)
| | - Anton Ficai
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.D.); (E.A.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
- Correspondence:
| | - Gabriel Constantinescu
- Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, Carol Davila University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania;
| | - Ecaterina Andronescu
- National Research Center for Food Safety, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania; (G.D.); (E.A.)
- National Center for Micro and Nanomaterials, University Politehnica of Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| |
Collapse
|
12
|
He J, Kovach A, Wang Y, Wang W, Wu W, Armani AM. Stretchable optical diffraction grating from poly(acrylic acid)/polyethylene oxide stereocomplex. OPTICS LETTERS 2021; 46:5493-5496. [PMID: 34724509 DOI: 10.1364/ol.432699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Advances in optical materials, which were initially static elements, have enabled dynamically tunable optical diffraction gratings to be designed. One common tuning strategy relies on mechanical deformation of the grating pitch to modify the diffraction pattern. In the present work, we demonstrate an all-polymer tunable diffraction grating fabricated using a modified replica molding process. The poly(acrylic acid) (PAA)/polyethylene oxide (PEO) polymer stereocomplex films exhibit optical transmittance at or above 80% from 500 nm to 1400 nm and stretchability over 800% strain with reversibility under 70% strain. The imprinted gratings are characterized at 633 nm and 1064 nm under a range of strain conditions. The measured tunability agrees with finite element method modeling.
Collapse
|
13
|
Keskin D, Zu G, Forson AM, Tromp L, Sjollema J, van Rijn P. Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioact Mater 2021; 6:3634-3657. [PMID: 33898869 PMCID: PMC8047124 DOI: 10.1016/j.bioactmat.2021.03.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022] Open
Abstract
The implementation of nanotechnology to develop efficient antimicrobial systems has a significant impact on the prospects of the biomedical field. Nanogels are soft polymeric particles with an internally cross-linked structure, which behave as hydrogels and can be reversibly hydrated/dehydrated (swollen/shrunken) by the dispersing solvent and external stimuli. Their excellent properties, such as biocompatibility, colloidal stability, high water content, desirable mechanical properties, tunable chemical functionalities, and interior gel-like network for the incorporation of biomolecules, make them fascinating in the field of biological/biomedical applications. In this review, various approaches will be discussed and compared to the newly developed nanogel technology in terms of efficiency and applicability for determining their potential role in combating infections in the biomedical area including implant-associated infections.
Collapse
Affiliation(s)
| | | | | | - Lisa Tromp
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Jelmer Sjollema
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| | - Patrick van Rijn
- University of Groningen, University Medical Center Groningen, Department of Biomedical Engineering, W. J. Kolff Institute, Antonius Deusinglaan 1, 9713 AV, Groningen, the Netherlands
| |
Collapse
|
14
|
Saleemi MA, Kong YL, Yong PVC, Wong EH. An Overview of Antimicrobial Properties of Carbon Nanotubes-Based Nanocomposites. Adv Pharm Bull 2021; 12:449-465. [PMID: 35935059 PMCID: PMC9348533 DOI: 10.34172/apb.2022.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/08/2021] [Accepted: 07/02/2021] [Indexed: 11/28/2022] Open
Abstract
The development of carbon-based nanomaterials has extensively facilitated new discoveries in various fields. Carbon nanotube-based nanocomposites (CNT-based nanocomposites) have lately recognized as promising biomaterials for a wide range of biomedical applications due to their unique electronic, mechanical, and biological properties. Nanocomposite materials such as silver nanoparticles (AgNPs), polymers, biomolecules, enzymes, and peptides have been reported in many studies, possess a broad range of antibacterial activity when incorporated with carbon nanotubes (CNTs). It is crucial to understand the mechanism which governs the antimicrobial activity of these CNT-based nanocomposite materials, including the decoupling individual and synergistic effects on the cells. In this review, the interaction behavior between microorganisms and different types of CNT-based nanocomposites is summarized to understand the respective antimicrobial performance in different conditions. Besides, the current development stage of CNT-based nanocomposite materials, the technical challenges faced, and the exceptional prospect of implementing potential antimicrobial CNT-based nanocomposite materials are also discussed.
Collapse
Affiliation(s)
- Mansab Ali Saleemi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Yeo Lee Kong
- Department of Engineering and Applied Sciences, American Degree Program, Taylor’s University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Phelim Voon Chen Yong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| | - Eng Hwa Wong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor’s University Lakeside Campus, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
15
|
Qiao Y, Zhang Q, Wang Q, Li Y, Wang L. Filament-anchored hydrogel layer on polypropylene hernia mesh with robust anti-inflammatory effects. Acta Biomater 2021; 128:277-290. [PMID: 33866036 DOI: 10.1016/j.actbio.2021.04.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/18/2022]
Abstract
The efficacy of implanted polypropylene (PP) hernia meshes is often compromised by an inflammatory response. Thus, engineering an anti-inflammatory mesh has significant implications for hernioplasty. Here, we report a facile strategy to develop a filament-anchored hydrogel layer (FAHL) on PP mesh (FAHL-P). The network of FAHL, made up of chondroitin sulfate and gelatin (CG), provided a biomimetic surface with immunoregulatory properties. The use of tannic acid (TA) as a crosslinker for CG additionally enhanced its anti-inflammatory properties. In addition, the fabrication protocol ensured that the hydrogel maintained the properties of the knitted mesh and the firmly adherent FAHL during general handling (dry state) and in the simulated body environment (wet state). CG/TA-PP killed 99.99% of S. aureus and retained 73% of its original antioxidant properties after 7 d. The FAHL durably performed with a controlled release of TA for 15 d. The strong anti-inflammatory effects of FAHL-P reduced collagen deposition and increased vascularization, which promoted native tissue generation. The fabrication strategy has potential applications in hernioplasty and may provide new insights into the design of other anti-inflammatory implants. STATEMENT OF SIGNIFICANCE: A hydrogel layer with robust anti-inflammatory effects was anchored firmly on mesh filament for hernia repair. Requiring no drug loading, this chondroitin sulphate -gelatin (CG) based hydrogel itself could inhibit the immunological attack owing to the biomimetic microenvironment created by the CG. Moreover, the hydrogel's crosslinker (tannic acid) content served as an effective scavenger for reducing pro-inflammatory factors, significantly mitigating the inflammation. Interestingly, the antibacterial effect of such hydrogel layer was also observed. In terms of the synergistic outcome of the design, our mesh can remarkably attenuate inflammation and promote constructive tissue regeneration in vivo. Furthermore, considering the relatively simple and easily scaled up formulation process, our strategy may indeed have great potential in alleviating post-implantation outcomes.
Collapse
|
16
|
Zhang F, Hu C, Yang L, Liu K, Ge Y, Wei Y, Wang J, Luo R, Wang Y. A conformally adapted all-in-one hydrogel coating: towards robust hemocompatibility and bactericidal activity. J Mater Chem B 2021; 9:2697-2708. [DOI: 10.1039/d1tb00021g] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A conformally adapted all-in-one hydrogel coatings that exhibit both hemocompatibility and bactericidal activity possess the potential for applications in blood-contacting devices.
Collapse
Affiliation(s)
- Fanjun Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Li Yang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Kunpeng Liu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yao Ge
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yuan Wei
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Jingyu Wang
- First Affiliated Hospital of Xi’an Jiaotong University
- Xi’an 710061
- China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
17
|
Kamelian FS, Mohammadi T, Naeimpoor F, Sillanpää M. One-Step and Low-Cost Designing of Two-Layered Active-Layer Superhydrophobic Silicalite-1/PDMS Membrane for Simultaneously Achieving Superior Bioethanol Pervaporation and Fouling/Biofouling Resistance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56587-56603. [PMID: 33269590 DOI: 10.1021/acsami.0c17046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recently, the coupling of biofuel fermentation broths and pervaporation has been receiving increasing attention. Some challenges, such as the destructive effects of constituents of the real fermentation broth on the membrane performances, the lethal effects of the membrane surface chemical modifiers on the microorganisms, and being expensive, are against this concept. For the first time, a continuous study on the one-step and low-cost preparation of superhydrophobic membranes for bioethanol separation is made to address these challenges. In our previous work, spraying as a fast, scalable, and low-cost procedure was applied to fabricate the one-layered active-layer hydrophobic (OALH) silicalite-1/polydimethylsiloxane (PDMS) membrane on the low-cost mullite support. In this work, the spraying method was adopted to fabricate a two-layered active-layer superhydrophobic (TALS) silicalite-1/PDMS membrane, where the novel active layer consisted of two layers with different hydrophobicities and densities. Contact-angle measurements, surface charge determination, scanning electron microscopy, atomic force microscopy, and pervaporation separation using a 5 wt % ethanol solution were used to statically evaluate the fouling/biofouling resistance and pervaporation performances of OALH and TALS membranes in this study. The TALS membrane presented a better resistance and performance. For dynamic experiments, the Box-Behnken design was used to identify the effects of substrates, microorganisms, and nutrient contents as the leading indicators of fermentation broth on the TALS membrane performances for the long-term utilization. The maximum performances of 1.88 kg/m2·h, 32.34, and 59.04 kg/m2·h concerning the permeation flux, separation factor, and pervaporation separation index were obtained, respectively. The dynamic fouling/biofouling resistance of the TALS membrane was also characterized using energy-dispersive X-ray spectroscopy of all the tested membranes. The TALS membrane demonstrated the synergistic resistance of membrane fouling and biofouling. Eventually, the novel TALS membrane was found to have potential for biofuel recovery, especially bioethanol.
Collapse
Affiliation(s)
- Fariba Sadat Kamelian
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
- Research and Technology Center of Membrane Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
- Biotechnology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, P.O. Box 16846-13114 Tehran, Iran
| | - Toraj Mohammadi
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
- Research and Technology Center of Membrane Processes, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
| | - Fereshteh Naeimpoor
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), P.O. Box 16846-13114 Tehran, Iran
- Biotechnology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, P.O. Box 16846-13114 Tehran, Iran
| | - Mika Sillanpää
- Department of Civil and Environmental Engineering, Florida International University, 33199 Miami, Florida, United States
| |
Collapse
|
18
|
Carbon Nanotube/Poly(dimethylsiloxane) Composite Materials to Reduce Bacterial Adhesion. Antibiotics (Basel) 2020; 9:antibiotics9080434. [PMID: 32707936 PMCID: PMC7459730 DOI: 10.3390/antibiotics9080434] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/26/2022] Open
Abstract
Different studies have shown that the incorporation of carbon nanotubes (CNTs) into poly(dimethylsiloxane) (PDMS) enables the production of composite materials with enhanced properties, which can find important applications in the biomedical field. In the present work, CNT/PDMS composite materials have been prepared to evaluate the effects of pristine and chemically functionalized CNT incorporation into PDMS on the composite's thermal, electrical, and surface properties on bacterial adhesion in dynamic conditions. Initial bacterial adhesion was studied using a parallel-plate flow chamber assay performed in conditions prevailing in urinary tract devices (catheters and stents) using Escherichia coli as a model organism and PDMS as a control due to its relevance in these applications. The results indicated that the introduction of the CNTs in the PDMS matrix yielded, in general, less bacterial adhesion than the PDMS alone and that the reduction could be dependent on the surface chemistry of CNTs, with less adhesion obtained on the composites with pristine rather than functionalized CNTs. It was also shown CNT pre-treatment and incorporation by different methods affected the electrical properties of the composites when compared to PDMS. Composites enabling a 60% reduction in cell adhesion were obtained by CNT treatment by ball-milling, whereas an increase in electrical conductivity of seven orders of magnitude was obtained after solvent-mediated incorporation. The results suggest even at low CNT loading values (1%), these treatments may be beneficial for the production of CNT composites with application in biomedical devices for the urinary tract and for other applications where electrical conductance is required.
Collapse
|
19
|
Keskin D, Mergel O, van der Mei HC, Busscher HJ, van Rijn P. Inhibiting Bacterial Adhesion by Mechanically Modulated Microgel Coatings. Biomacromolecules 2019; 20:243-253. [PMID: 30512925 PMCID: PMC6335679 DOI: 10.1021/acs.biomac.8b01378] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/02/2018] [Indexed: 02/06/2023]
Abstract
Bacterial infection is a severe problem especially when associated with biomedical applications. This study effectively demonstrates that poly- N-isopropylmethacrylamide based microgel coatings prevent bacterial adhesion. The coating preparation via a spraying approach proved to be simple and both cost and time efficient creating a homogeneous dense microgel monolayer. In particular, the influence of cross-linking density, microgel size, and coating thickness was investigated on the initial bacterial adhesion. Adhesion of Staphylococcus aureus ATCC 12600 was imaged using a parallel plate flow chamber setup, which gave insights in the number of the total bacteria adhering per unit area onto the surface and the initial bacterial deposition rates. All microgel coatings successfully yielded more than 98% reduction in bacterial adhesion. Bacterial adhesion depends both on the cross-linking density/stiffness of the microgels and on the thickness of the microgel coating. Bacterial adhesion decreased when a lower cross-linking density was used at equal coating thickness and at equal cross-linking density with a thicker microgel coating. The highest reduction in the number of bacterial adhesion was achieved with the microgel that produced the thickest coating ( h = 602 nm) and had the lowest cross-linking density. The results provided in this paper indicate that microgel coatings serve as an interesting and easy applicable approach and that it can be fine-tuned by manipulating the microgel layer thickness and stiffness.
Collapse
Affiliation(s)
- Damla Keskin
- University
of Groningen, University Medical Center Groningen, Department of Biomedical
Engineering (FB40), W.J. Kolff Institute
for Biomedical Engineering and Materials Science (FB41), Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Olga Mergel
- University
of Groningen, University Medical Center Groningen, Department of Biomedical
Engineering (FB40), W.J. Kolff Institute
for Biomedical Engineering and Materials Science (FB41), Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henny C. van der Mei
- University
of Groningen, University Medical Center Groningen, Department of Biomedical
Engineering (FB40), W.J. Kolff Institute
for Biomedical Engineering and Materials Science (FB41), Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henk J. Busscher
- University
of Groningen, University Medical Center Groningen, Department of Biomedical
Engineering (FB40), W.J. Kolff Institute
for Biomedical Engineering and Materials Science (FB41), Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Patrick van Rijn
- University
of Groningen, University Medical Center Groningen, Department of Biomedical
Engineering (FB40), W.J. Kolff Institute
for Biomedical Engineering and Materials Science (FB41), Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- University of
Groningen, Zernike Institute for Advanced Materials, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|