1
|
Viegas JSR, Araujo JS, Leite MN, Praça FG, Ciampo JOD, Espreáfico EM, Frade MAC, Bentley MVLB. Bcl-2 knockdown by multifunctional lipid nanoparticle and its influence in apoptosis pathway regarding cutaneous melanoma: in vitro and ex vivo studies. Drug Deliv Transl Res 2025; 15:753-768. [PMID: 39222192 DOI: 10.1007/s13346-024-01692-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Multifunctional therapies have emerged as innovative strategies in cancer treatment. In this research article, we proposed a nanostructured lipid carrier (NLC) designed for the topical treatment of cutaneous melanoma, which simultaneously delivers 5-FU and Bcl-2 siRNA. The characterized nanoparticles exhibited a diameter of 259 ± 9 nm and a polydispersion index of 0.2, indicating a uniform size distribution. The NLCs were primarily localized in the epidermis, effectively minimizing the systemic release of 5-FU across skin layers. The ex vivo skin model revealed the formation of a protective lipid film, decreasing the desquamation process of the stratum corneum which can be associated to an effect of increasing permeation. In vitro assays demonstrated that A375 melanoma cells exhibited a higher sensitivity to the treatment compared to non-cancerous cells, reflecting the expected difference in their metabolic rates. The uptake of NLC by A375 cells reached approximately 90% within 4 h. The efficacy of Bcl-2 knockdown was thoroughly assessed using ELISA, Western blot, and qRT-PCR analyses, revealing a significant knockdown and synergistic action of the NLC formulation containing 5-FU and Bcl-2 siRNA (at low concentration --100 pM). Notably, the silencing of Bcl-2 mRNA also impacted other members of the Bcl-2 protein family, including Mcl-1, Bcl-xl, BAX, and BAK. The observed modulation of these proteins strongly indicated the activation of the apoptosis pathway, suggesting a successful inhibition of melanoma growth and prevention of its in vitro spread.
Collapse
Affiliation(s)
- Juliana Santos Rosa Viegas
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jackeline Souza Araujo
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcel Nani Leite
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabiola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jose Orestes Del Ciampo
- School of Pharmaceutical Sciences of Ribeirao Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Enilza Maria Espreáfico
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marco Andrey Cipriani Frade
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
2
|
Krivitsky V, Krivitsky A, Mantella V, Ben-Yehuda Greenwald M, Sankar DS, Betschmann J, Bader J, Zoratto N, Schreier K, Feiss S, Walker D, Dengjel J, Werner S, Leroux JC. Ultrafast and Controlled Capturing, Loading, and Release of Extracellular Vesicles by a Portable Microstructured Electrochemical Fluidic Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212000. [PMID: 37452635 DOI: 10.1002/adma.202212000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Extracellular vesicles (EVs) are secreted by all living cells and are found in body fluids. They exert numerous physiological and pathological functions and serve as cargo shuttles. Due to their safety and inherent bioactivity, they have emerged as versatile therapeutic agents, biomarkers, and potential drug carriers. Despite the growing interest in EVs, current progress in this field is, in part, limited by relatively inefficient isolation techniques. Conventional methods are indeed slow, laborious, require specialized laboratory equipment, and may result in low yield and purity. This work describes an electrochemically controlled "all-in-one" device enabling capturing, loading, and releasing of EVs. The device is composed of a fluidic channel confined within antibody-coated microstructured electrodes. It rapidly isolates EVs with a high level of purity from various biofluids. As a proof of principle, the device is applied to isolate EVs from skin wounds of healthy and diabetic mice. Strikingly, it is found that EVs from healing wounds of diabetic mice are enriched in mitochondrial proteins compared to those of healthy mice. Additionally, the device improves the loading protocol of EVs with polyplexes, and may therefore find applications in nucleic acid delivery. Overall, the electrochemical device can greatly facilitate the development of EVs-based technologies.
Collapse
Affiliation(s)
- Vadim Krivitsky
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Adva Krivitsky
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Valeria Mantella
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Maya Ben-Yehuda Greenwald
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | | | - Jil Betschmann
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Johannes Bader
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Nicole Zoratto
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Kento Schreier
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Sarah Feiss
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Dario Walker
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, 1700, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
3
|
Han S, Wu J. Development of a Lysine-Based Poly(ester amide) Library with High Biosafety and a Finely Tunable Structure for Spatiotemporal-Controlled Protein Delivery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55944-55956. [PMID: 36503257 DOI: 10.1021/acsami.2c16492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
With the fast growth of protein therapeutics, efficient, precise, and universal delivery platforms are highly required. However, very few reports have discussed the progress of precisely spatiotemporal-controlled protein delivery. Therefore, a mini library of well-designed amino acid-based poly(ester amide)s derived from lysine (Lys-aaPEAs) has been developed. Lys-aaPEAs can interact with and encapsulate proteins into nanocomplexes via electrostatic interactions. The chemical structure of Lys-aaPEAs can be finely tuned by changing the type and molar ratio of the monomers. Studies of structure-function relationships reveal that the carbon chain length of diacid/diol segments, hydrophilicity, and electrical properties affect the polymer-protein interaction, cell-material interaction, and, therefore, the outcome of protein delivery. By modulating the structures of Lys-aaPEAs, the delivery systems could present customized physiochemical and biological properties and perform time- and space-specific protein release and delivery without causing any systematic toxicity. The screened systems exhibited prolonged hypoglycemic activity and superior biosafety in vivo, using insulin as a model protein and a mouse model bearing type 1 diabetes mellitus (T1DM). This work establishes a novel lysine-based polymer platform for spatiotemporal-controlled protein delivery and offers a paradigm of precise structure-function controllability for designing the next generation of polymers.
Collapse
Affiliation(s)
- Shuyan Han
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, P. R. China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou 510006, P. R. China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, P. R. China
| |
Collapse
|
4
|
Sulfonated Amphiphilic Poly(α)glutamate Amine—A Potential siRNA Nanocarrier for the Treatment of Both Chemo-Sensitive and Chemo-Resistant Glioblastoma Tumors. Pharmaceutics 2021; 13:pharmaceutics13122199. [PMID: 34959480 PMCID: PMC8705840 DOI: 10.3390/pharmaceutics13122199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
Development of chemo-resistance is a major challenge in glioblastoma (GB) treatment. This phenomenon is often driven by increased activation of genes associated with DNA repair, such as the alkyl-removing enzyme O6-methylguanine-DNA methyltransferase (MGMT) in combination with overexpression of canonical genes related to cell proliferation and tumor progression, such as Polo-like kinase 1 (Plk1). Hereby, we attempt to sensitize resistant GB cells using our established amphiphilic poly(α)glutamate (APA): small interfering RNA (siRNA) polyplexes, targeting Plk1. Furthermore, we improved brain-targeting by decorating our nanocarrier with sulfonate groups. Our sulfonated nanocarrier showed superior selectivity towards P-selectin (SELP), a transmembrane glycoprotein overexpressed in GB and angiogenic brain endothelial cells. Self-assembled polyplexes of sulfonated APA and siPlk1 internalized into GB cells and into our unique 3-dimensional (3D) GB spheroids inducing specific gene silencing. Moreover, our RNAi nanotherapy efficiently reduced the cell viability of both chemo-sensitive and chemo-resistant GB cells. Our developed sulfonated amphiphilic poly(α)glutamate nanocarrier has the potential to target siRNA to GB brain tumors. Our findings may strengthen the therapeutic applications of siRNA for chemo-resistant GB tumors, or as a combination therapy for chemo-sensitive GB tumors.
Collapse
|
5
|
Liu Y, Yin L. α-Amino acid N-carboxyanhydride (NCA)-derived synthetic polypeptides for nucleic acids delivery. Adv Drug Deliv Rev 2021; 171:139-163. [PMID: 33333206 DOI: 10.1016/j.addr.2020.12.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
In recent years, gene therapy has come into the spotlight for the prevention and treatment of a wide range of diseases. Polypeptides have been widely used in mediating nucleic acid delivery, due to their versatilities in chemical structures, desired biodegradability, and low cytotoxicity. Chemistry plays an essential role in the development of innovative polypeptides to address the challenges of producing efficient and safe gene vectors. In this Review, we mainly focused on the latest chemical advances in the design and preparation of polypeptide-based nucleic acid delivery vehicles. We first discussed the synthetic approach of polypeptides via ring-opening polymerization (ROP) of N-carboxyanhydrides (NCAs), and introduced the various types of polypeptide-based gene delivery systems. The extracellular and intracellular barriers against nucleic acid delivery were then outlined, followed by detailed review on the recent advances in polypeptide-based delivery systems that can overcome these barriers to enable in vitro and in vivo gene transfection. Finally, we concluded this review with perspectives in this field.
Collapse
Affiliation(s)
- Yong Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| |
Collapse
|
6
|
Khan MA, Kiser MR, Moradipour M, Nadeau EA, Ghanim RW, Webb BA, Rankin SE, Knutson BL. Effect of Confinement in Nanopores on RNA Interactions with Functionalized Mesoporous Silica Nanoparticles. J Phys Chem B 2020; 124:8549-8561. [PMID: 32881500 DOI: 10.1021/acs.jpcb.0c06536] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Amine-functionalized mesoporous silica nanoparticles (MSNPAs) are ideal carriers for oligonucleotides for gene delivery and RNA interference. This investigation examines the thermodynamic driving force of interactions of double-stranded (ds) RNA with MSNPAs as a function of RNA length (84 and 282 base pair) and particle pore diameter (nonporous, 2.7, 4.3, and 8.1 nm) using isothermal titration calorimetry, extending knowledge of solution-based nucleic acid-polycation interactions to RNA confined in nanopores. Adsorption of RNA follows a two-step process: endothermic interactions driven by entropic contribution from counterion (and water) release and an exothermic regime dominated by short-range interactions within the pores. Evidence of hindered pore loading of the longer RNA and pore size-dependent confinement of RNA in the MSPAs is provided from the relative contributions of the endothermic and exothermic regimes. Reduction of endothermic and exothermic enthalpies in both regimes in the presence of salt for both lengths of RNA indicates the significant contribution of short-range electrostatic interactions, whereas ΔH and ΔG values are consistent with conformation changes and desolvation of nucleic acids upon binding with polycations. Knowledge of the interactions between RNA and functionalized porous nanoparticles will aid in porous nanocarrier design suitable for functional RNA delivery.
Collapse
Affiliation(s)
- M Arif Khan
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Maelyn R Kiser
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Mahsa Moradipour
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Emily A Nadeau
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Ramy W Ghanim
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Bruce A Webb
- Department of Entomology, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Stephen E Rankin
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Barbara L Knutson
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
7
|
Singh RP, Hidalgo T, Cazade PA, Darcy R, Cronin MF, Dorin I, O’Driscoll CM, Thompson D. Self-Assembled Cationic β-Cyclodextrin Nanostructures for siRNA Delivery. Mol Pharm 2019; 16:1358-1366. [DOI: 10.1021/acs.molpharmaceut.8b01307] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Tania Hidalgo
- School of Pharmacy, Cavanagh Pharmacy Building, University College Cork, Cork, Ireland
| | - Pierre-Andre Cazade
- Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Raphael Darcy
- School of Pharmacy, Cavanagh Pharmacy Building, University College Cork, Cork, Ireland
| | - Michael F. Cronin
- School of Pharmacy, Cavanagh Pharmacy Building, University College Cork, Cork, Ireland
| | - Irina Dorin
- Malvern Panalytical Ltd., Grovewood Road, Malvern, Worcestershire WR14 1XZ, U.K
| | | | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|