1
|
Malik A, Alhomida A, Khan JM. SDBS induces multiple catalase conformations in a dose-dependent manner. Int J Biol Macromol 2023; 253:127606. [PMID: 37871717 DOI: 10.1016/j.ijbiomac.2023.127606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Amyloid fibrils have been linked to several incurable diseases. They are long and thin fibrous proteins that self-assemble into fibrils. Small molecules can stimulate amyloid fibrillation, but the mechanism by which this happens is not well understood. This study examined how a negatively charged benzene ring containing surfactant, sodium dodecylbenzene sulphonate (SDBS), affects the fibrillation of bovine liver catalase (BLC). After SDBS treatment, BLC conformational changes were examined in vitro using turbidity, RLS kinetics, intrinsic fluorescence, ThT fluorescence, far-UV CD, and TEM. BLC in the native state was alpha-helical at pH 7.4, while it was converted to a random coil structure at pH 2.0. Far-UV CD and intrinsic fluorescence data showed that at concentrations <0.1 mM of SDBS, randomly coiled BLC assumed a native-like alpha-helical structure. However, between 0.1 and 1.0 mM SDBS, BLC was aggregated. ThT fluorescence and far-UV CD measurements showed the amyloid-like structures in the aggregated BLC. At higher SDBS concentrations (>1.0 mM) at pH 2.0, BLC again attains a native-like alpha-helical structure. It is essential for therapeutic purposes to clearly understand the process underlying surfactant- or lipid-induced fibrillation.
Collapse
Affiliation(s)
- Ajamaluddin Malik
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia.
| | - Abdullah Alhomida
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, Saudi Arabia
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Effect of head-group of cationic surfactants and structure of ionic groups of anionic polyelectrolyte in oppositely charged polymer-surfactant complexes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126075] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Ma J, Yang M, Batchelor-McAuley C, Compton RG. Visualising electrochemical reaction layers: mediated vs. direct oxidation. Phys Chem Chem Phys 2020; 22:12422-12433. [PMID: 32459226 DOI: 10.1039/d0cp01904f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical treatments are widely used for 'clean up' in which toxic metals and organic compounds are removed using direct or mediated electrolysis. Herein we report novel studies offering proof of concept that spectrofluorometric electrochemistry can provide important mechanistic detail into these processes. A thin layer opto-electrochemical cell, with a carbon fibre (radius 3.5 μm) working electrode, is used to visualise the optical responses of the oxidative destruction of a fluorophore either directly, on an electrode, or via the indirect reaction of the analyte with an electrochemically formed species which 'mediates' the destruction. The optical responses of these two reaction mechanisms are first predicted by numerical simulation followed by experimental validation of each using two fluorescent probes, a redox inactive (in the electrochemical window) 1,3,6,8-pyrenetetrasulfonic acid and the redox-active derivative 8-hydroxypyrene-1,3,6-trisulfonic acid. In the vicinity of a carbon electrode held at different oxidative potentials, the contrast between indirect electro-destruction, chlorination, and direct oxidation is very obvious. Excellent agreement is seen between the numerically predicted fluorescence intensity profiles and experiment.
Collapse
Affiliation(s)
- Junling Ma
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| | - Minjun Yang
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| | - Christopher Batchelor-McAuley
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| | - Richard G Compton
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, UK.
| |
Collapse
|
4
|
Sun Z, Fan YZ, Du SZ, Yang YZ, Ling Y, Li NB, Luo HQ. Conversion of Fluorescence Signals into Optical Fingerprints Realizing High-Throughput Discrimination of Anionic Sulfonate Surfactants with Similar Structure Based on a Statistical Strategy and Luminescent Metal–Organic Frameworks. Anal Chem 2020; 92:7273-7281. [DOI: 10.1021/acs.analchem.0c00907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhe Sun
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yu Zhu Fan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shi Zhe Du
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yu Zhu Yang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yu Ling
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Nian Bing Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hong Qun Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Khan JM, Malik A, Ahmad Khan M, Sharma P, Sen P. Pre-micellar concentrations of sodium dodecylbenzene sulphonate induce amyloid-like fibril formation in myoglobin at pH 4.5. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Bao H, Xing H, Liu M, Zhang Q, Yan H, Liu J. Effects of polymer concentration and type on the interactions between 1-methyl-3-tetradecylimidazolium bromide and polymers in aqueous solution. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1651204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hongcui Bao
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Huaigeng Xing
- College of Pharmacy, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Min Liu
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Qian Zhang
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Hui Yan
- College of Pharmacy, Liaocheng University, Liaocheng, Shandong, P. R. China
| | - Jie Liu
- School of Chemistry and Chemical Engineering, Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage & Novel Cell Technology, Liaocheng University, Liaocheng, Shandong, P. R. China
| |
Collapse
|
7
|
Khan N, Brettmann B. Intermolecular Interactions in Polyelectrolyte and Surfactant Complexes in Solution. Polymers (Basel) 2018; 11:E51. [PMID: 30960035 PMCID: PMC6401804 DOI: 10.3390/polym11010051] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/20/2018] [Accepted: 12/28/2018] [Indexed: 12/20/2022] Open
Abstract
Polyelectrolytes are an important class of polymeric materials and are increasingly used in complex industrial formulations. A core use of these materials is in mixtures with surfactants, where a combination of hydrophobic and electrostatic interactions drives unique solution behavior and structure formation. In this review, we apply a molecular level perspective to the broad literature on polyelectrolyte-surfactant complexes, discussing explicitly the hydrophobic and electrostatic interaction contributions to polyelectrolyte surfactant complexes (PESCs), as well as the interplay between the two molecular interaction types. These interactions are sensitive to a variety of solution conditions, such as pH, ionic strength, mixing procedure, charge density, etc. and these parameters can readily be used to control the concentration at which structures form as well as the type of structure in the bulk solution.
Collapse
Affiliation(s)
- Nasreen Khan
- Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Blair Brettmann
- Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|