1
|
Cras GL, Hespel L, Guinault A, Sollogoub C, Alexandre S, Marais S, Follain N. Confinement Effect in Multilayer Films Made from Semicrystalline and Bio-Based Polyamide and Polylactic Acid. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43961-43978. [PMID: 39135305 DOI: 10.1021/acsami.4c07839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Bio-based multilayer films were prepared by using the innovative nanolayer coextrusion process to produce films with a number of alternating layers varying from 3 to 2049. For the first time, a semicrystalline polymer was confined by another semicrystalline polymer by nanolayering in order to develop high barrier polyamide (PA11)/polylactic acid (PLA) films without compromising thermal stability and mechanical behavior. This process allows the preparation of nanostratified films with thin layers (down to nanometric thicknesses) in which a confinement effect can be induced. The stratified structure has been investigated, and the layer thicknesses have been measured. Barrier properties were successfully correlated to the microstructure, as well as the thermal behavior, and mechanical properties. The layer continuity was fully achieved for most of the films, but some layer breakups have been observed on the film with the thinnest PLA layer (2049-layers film). Coextruding PLA with PA11 has induced an increase in PLA crystallinity (from 4 to 16%) along with an increase in thermal stability of the multilayer films without impacting PA11 properties. Gas barrier properties were driven by the PLA confined layers due to the microstructural rearrangement by increasing crystallinity, whereas water barrier properties were governed by the PA11 confining layers due to its lower water affinity. As a consequence, a decrease of water permeability (up to 11 times less permeable for the 6M film) but an increase of gas barrier properties (barrier improvement factor (BIF) of 66% for the 0M film for N2 and BIF of 36% for the 6M film for CO2 for instance) were evidenced as the layer number was increased. This study paves the way for the development of ecofriendly materials with outstanding barrier performances and highlights the importance of nonmiscible polymers adhesion at melt state and additives presence.
Collapse
Affiliation(s)
- Guillaume Le Cras
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen F-76000, France
| | - Louise Hespel
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen F-76000, France
| | - Alain Guinault
- PIMM, Arts et Métiers ParisTech/CNRS/CNAM, Paris 75013, France
| | | | - Stéphane Alexandre
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen F-76000, France
| | - Stéphane Marais
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen F-76000, France
| | - Nadège Follain
- Univ Rouen Normandie, INSA Rouen Normandie, CNRS, Normandie Univ, PBS UMR 6270, Rouen F-76000, France
| |
Collapse
|
2
|
Ávila-Orta CA, Covarrubias-Gordillo CA, Fonseca-Florido HA, Melo-López L, Radillo-Ruíz R, Gutiérrez-Montiel E. PLA/modified-starch blends and their application for the fabrication of non-woven fabrics by melt-blowing. Carbohydr Polym 2023; 316:120975. [PMID: 37321705 DOI: 10.1016/j.carbpol.2023.120975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/14/2023] [Accepted: 04/30/2023] [Indexed: 06/17/2023]
Abstract
Blends of polylactic acid (PLA) and thermoplastic starch (TS) with and without chemical modification were obtained by melt extrusion and used to obtain non-woven fabrics by melt-blowing for the first time. Different TS were obtained by reactive extrusion from native cassava, oxidized, maleated, and dual modified (oxidized and maleated) starch. The chemical modification of starch decreases the difference in viscosity and favors blending, resulting in more homogeneous morphologies, unlike the blends with unmodified TS, which displayed a visible phase separation with large TS droplets. The dual modified starch showed a synergistic effect to process TS by melt-blowing. Regarding non-woven fabrics, values in diameter (2.5-82.1 μm), thickness (0.4-0.6 mm), and grammage (49.9-103.8 g/m2) were explained due to differences in viscosity of the components, and to the fact that during melt the hot air preferentially stretches and thins the areas without large droplets of TS. Moreover, plasticized starch acts as a flow modifier. The porosity of the fibers increased with the addition of TS. Further studies and optimization of blends with low contents of TS and type starch modification will be necessary to completely understand these systems with very complex behavior to obtain non-woven fabrics with improved properties and application.
Collapse
Affiliation(s)
- Carlos Alberto Ávila-Orta
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila C. P 25294, Mexico
| | | | - Heidi Andrea Fonseca-Florido
- Investigador por México, CONACYT, Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila C.P 25294, Mexico.
| | - Leticia Melo-López
- Investigador por México, CONACYT, Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila C.P 25294, Mexico
| | - Rodolfo Radillo-Ruíz
- Consultoría e Ingeniería en Servicios Especializados (CISE), Leona Vicario 1686, Ciudad de México C.P 09500, Mexico
| | - Edith Gutiérrez-Montiel
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo, Coahuila C. P 25294, Mexico
| |
Collapse
|
3
|
Sun HW, Zhang H, Zhen Q, Wang SF, Hu JJ, Cui JQ, Qian XM. Large-scale preparation of polylactic acid/polyethylene glycol micro/nanofiber fabrics with aligned fibers via a post-drafting melt blown process. JOURNAL OF POLYMER RESEARCH 2022. [PMCID: PMC9272650 DOI: 10.1007/s10965-022-03184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Soo XYD, Wang S, Yeo CCJ, Li J, Ni XP, Jiang L, Xue K, Li Z, Fei X, Zhu Q, Loh XJ. Polylactic acid face masks: Are these the sustainable solutions in times of COVID-19 pandemic? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151084. [PMID: 34678364 PMCID: PMC8531277 DOI: 10.1016/j.scitotenv.2021.151084] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 05/19/2023]
Abstract
The global massive consumption of disposable face masks driven by the ongoing COVID-19 pandemic has emerged as a blooming disaster to both the land and marine environment that might last for generations. Growing public concerns have been raised over the management and control of this new form of plastic pollution, and one of the proposed sustainable solution is to use renewable and/or biodegradable resources to develop mask materials in order to minimize their environmental impacts. As a representative biodegradable polymer, polylactic acid (PLA) has been proposed as a promising candidate to produce non-woven face masks instead of those fossil-based polymers. To further explore the feasibility of this alternative mask material, the present work aims to study both the hydrolytic and bio-degradation behaviors of pure PLA-derived 3-ply disposable face masks at ambient temperature. Hydrolytic degradability was investigated at different pH conditions of 2, 7 and 13 with the whole piece of face mask soaked for regular timed intervals up to 8 weeks. Weight loss study showed neutral and acidic conditions had minimal effect on PLA masks, but rapid degradation occurred under basic conditions in the first week with a sharp 25% decrease in weight that slowly tapered off, coupled with solution pH dropping from 13 to 9.6. This trend was supported by mechanical property, bacterial filtration efficiency (BFE) and particulate filtration efficiency (PFE) studies. Masks soaked in basic conditions had their modulus and tensile strength dropped by more than 50% after 8 weeks where the middle layer reached 68% and 90% respectively just after 48 h, and BFE and PFE decreased by 14% and 43% respectively after 4 weeks, which was much more significant than those in neutral and acidic conditions. Base degradation was also supported by nuclear magnetic resonance (NMR) and fourier transform infrared (FTIR), which disclosed that only the middle layer undergo major degradation with random chain scission and cleavage of enol or enolate chain ends, while outer and inner layers were much less affected. Scanning electron microscopy (SEM) attributed this observation to thinner PLA fibers for the middle layer of 3-7 μm diameter, which on average is 3 times smaller. This degradation was further supported by gel permeation chromatography (GPC) which saw an increase in lower molecular weight fragment Mw ~ 800 Da with soaking duration. The biodegradation behavior was studied under OECD 301F specification in sewage sludge environment. Similarly, degradation to the middle meltblown layer was more extensive, where the average weight loss and carbon loss was 25.8% and 25.7% respectively, double that of outer/inner spunbond layer. The results showed that the face masks did not completely disintegrate after 8 weeks, but small solubilized fragments of PLA formed in the biodegradation process can be completely mineralized into carbon dioxide without generation of secondary microplastic pollution in the environment. PLA masks are therefore a slightly greener option to consider in times of a pandemic that the world was caught unprepared; however future research on masks could be geared towards a higher degradability material that fully breaks down into non-harmful components while maintaining durability, filtration and protection properties for users.
Collapse
Affiliation(s)
- Xiang Yun Debbie Soo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Suxi Wang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Chee Chuan Jayven Yeo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Jiuwei Li
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Xi Ping Ni
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Lu Jiang
- School of Biomedicine and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Kun Xue
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, 1 Cleantech Loop, Singapore 637141, Singapore.
| | - Qiang Zhu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| |
Collapse
|
5
|
Sueyoshi Y, Niwa A, Itani Y, Yamauchi M, Asamura S, Teramura T, Isogai N. Surface modification of the cubic micro-cartilage by collagenase treatment and its efficacy in cartilage regeneration for ear tissue engineering. Int J Pediatr Otorhinolaryngol 2022; 153:111037. [PMID: 34998203 DOI: 10.1016/j.ijporl.2021.111037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/31/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND In order to enhance cartilage regeneration, surface modification of the cubic micro-cartilage with the collagenase treatment was tested and its efficacy to tissue engineer ear cartilage was investigated. MATERIALS AND METHODS Harvested cubic micro-cartilages were treated with collagenase with different digestion time (0, 15, 60, and 120 min). Histological, ultrastructural (SEM and TEM), and Western blot analyses were carried out. Subsequently, A total of 45 dogs were used to tissue engineer ear cartilage. Using collagenase-treated micro-cartilage, the ear cartilage regeneration with the prepared dilution (8, 12.5, 25, 50, 100%) of micro-cartilage block seeding was performed to determine the minimum amount of cartilage tissue required for ear tissue-engineering (n = 6 at each point in each group). At 10 weeks after surgery, samples were resected and subjected to histochemical and immune-histological evaluation for cartilage regeneration. RESULTS In vitro study on micro-cartilage morphology and western blot analysis showed that collagenase digestion was optimal at 60 min for cartilage regeneration. In vivo evaluation on the reduced proportions of micro-cartilage block seeding onto implant scaffolds under 60-min collagenase digestion determined the minimum amount of cartilage tissue necessary to initiate a one-step ear cartilage regeneration in a canine autologous model, which was 12.5-25% of the original ear size. CONCLUSION Tissue-engineering ear cartilage from limited volume of donor cartilage can possibly be achieved by the collagenase treatment on micro-cartilage to expand cartilage regeneration capacity, application of cytokine sustained-release system, and seeding on a suitable ear scaffold material.
Collapse
Affiliation(s)
- Yu Sueyoshi
- Department of Plastic and Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, 5898511, Japan
| | - Atsuko Niwa
- Department of Plastic and Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, 5898511, Japan
| | - Yoshihito Itani
- Department of Plastic and Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, 5898511, Japan
| | - Makoto Yamauchi
- Department of Plastic and Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, 5898511, Japan
| | - Shinichi Asamura
- Department of Plastic Reconstructive Surgery, Wakayama Medical School, Wakayama, 6418509, Japan
| | - Takeshi Teramura
- Institute of Advanced Clinical Medicine, Kindai University Faculty of Medicine, Osaka, 5898511, Japan
| | - Noritaka Isogai
- Department of Plastic and Reconstructive Surgery, Kindai University Faculty of Medicine, Osaka-sayama, Osaka, 5898511, Japan.
| |
Collapse
|
6
|
Beke ÁK, Gyürkés M, Nagy ZK, Marosi G, Farkas A. Digital twin of low dosage continuous powder blending - Artificial neural networks and residence time distribution models. Eur J Pharm Biopharm 2021; 169:64-77. [PMID: 34562574 DOI: 10.1016/j.ejpb.2021.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/24/2021] [Accepted: 09/17/2021] [Indexed: 10/20/2022]
Abstract
In this paper we present a thorough description of the digital twin development for a continuous pharmaceutical powder blending process in accordance with the Process Analytical Technologies (PAT) and Quality by Design (QbD) guidelines. A low-dosage system of caffeine active pharmaceutical ingredient (API) and dextrose excipient was examined via continuous blending experiments. Near infrared (NIR) spectroscopy-based process analytics were applied; quantitative evaluation of spectra was achieved using multivariate data analysis. The blending system was represented with mechanistic residence time distribution (RTD) models and two types of recurrent artificial neural networks (ANN), experimental datasets were used for model training or fitting and validation. Detailed comparison of the two modelling approaches, the optimization of the model-based digital twin, and efficiency of the soft sensor-based process monitoring is presented through several validating simulations. Both RTD models and nonlinear autoregressive neural networks demonstrated excellent predictive power for the low dosage blending process. RTD models can prove to be more advantageous in industrial development as they are less resource-intensive to develop and prediction accuracy on low concentration levels lacks dependency from the precision of chemometric calibration. Reduced material costs and limited development timeframe render the digital twin an efficient tool in technological development.
Collapse
Affiliation(s)
- Áron Kristóf Beke
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rakpart 3, Budapest H-1111, Hungary
| | - Martin Gyürkés
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rakpart 3, Budapest H-1111, Hungary
| | - Zsombor Kristóf Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rakpart 3, Budapest H-1111, Hungary
| | - György Marosi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rakpart 3, Budapest H-1111, Hungary
| | - Attila Farkas
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), Műegyetem rakpart 3, Budapest H-1111, Hungary.
| |
Collapse
|
7
|
Review on Spinning of Biopolymer Fibers from Starch. Polymers (Basel) 2021; 13:polym13071121. [PMID: 33915955 PMCID: PMC8036305 DOI: 10.3390/polym13071121] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 12/16/2022] Open
Abstract
Increasing interest in bio-based polymers and fibers has led to the development of several alternatives to conventional plastics and fibers made of these materials. Biopolymer fibers can be made from renewable, environmentally friendly resources and can be fully biodegradable. Biogenic resources with a high content of carbohydrates such as starch-containing plants have huge potentials to substitute conventional synthetic plastics in a number of applications. Much literature is available on the production and modification of starch-based fibers and blends of starch with other polymers. Chemistry and structure–property relationships of starch show that it can be used as an attractive source of raw material which can be exploited for conversion into a number of high-value bio-based products. In this review, possible spinning techniques for the development of virgin starch or starch/polymer blend fibers and their products are discussed. Beneficiation of starch for the development of bio-based fibers can result in the sustainable replacement of oil-based high-value materials with cost-effective, environmentally friendly, and abundant products.
Collapse
|
8
|
Kara Y, Molnár K. Revealing of process–structure–property relationships of fine polypropylene fiber mats generated via melt blowing. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5270] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yahya Kara
- Department of Polymer Engineering, Faculty of Mechanical Engineering Budapest University of Technology and Economics Budapest Hungary
| | - Kolos Molnár
- Department of Polymer Engineering, Faculty of Mechanical Engineering Budapest University of Technology and Economics Budapest Hungary
- MTA–BME Research Group for Composite Science and Technology Budapest Hungary
| |
Collapse
|
9
|
Gyürkés M, Madarász L, Köte Á, Domokos A, Mészáros D, Beke ÁK, Nagy B, Marosi G, Pataki H, Nagy ZK, Farkas A. Process Design of Continuous Powder Blending Using Residence Time Distribution and Feeding Models. Pharmaceutics 2020; 12:pharmaceutics12111119. [PMID: 33233635 PMCID: PMC7699818 DOI: 10.3390/pharmaceutics12111119] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022] Open
Abstract
The present paper reports a thorough continuous powder blending process design of acetylsalicylic acid (ASA) and microcrystalline cellulose (MCC) based on the Process Analytical Technology (PAT) guideline. A NIR-based method was applied using multivariate data analysis to achieve in-line process monitoring. The process dynamics were described with residence time distribution (RTD) models to achieve deep process understanding. The RTD was determined using the active pharmaceutical ingredient (API) as a tracer with multiple designs of experiment (DoE) studies to determine the effect of critical process parameters (CPPs) on the process dynamics. To achieve quality control through material diversion from feeding data, soft sensor-based process control tools were designed using the RTD model. The operation block model of the system was designed to select feasible experimental setups using the RTD model, and feeder characterizations as digital twins, therefore visualizing the output of theoretical setups. The concept significantly reduces the material and instrumental costs of process design and implementation.
Collapse
|
10
|
Moore KM, Murthy AB, Graham-Gurysh EG, Hingtgen SD, Bachelder EM, Ainslie KM. Polymeric Biomaterial Scaffolds for Tumoricidal Stem Cell Glioblastoma Therapy. ACS Biomater Sci Eng 2020; 6:3762-3777. [PMID: 33463324 PMCID: PMC10373914 DOI: 10.1021/acsbiomaterials.0c00477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor and has a poor prognosis; as such, there is an urgent need to develop innovative new therapies. Tumoricidal stem cells are an emerging therapy that has the potential to combat limitations of traditional local and systemic chemotherapeutic strategies for GBM by providing a source for high, sustained concentrations of tumoricidal agents locally to the tumor. One major roadblock for tumoricidal stem cell therapy is that the persistence of tumoricidal stem cells injected as a cell suspension into the GBM surgical resection cavity is limited. Polymeric biomaterial scaffolds have been utilized to enhance the delivery of tumoricidal stem cells in the surgical resection cavity and extend their persistence in the brain, ultimately increasing their therapeutic efficacy against GBM. In this review, we examine three main scaffold categories explored for tumoricidal stem cell therapy: microcapsules, hydrogels, and electrospun scaffolds. Furthermore, considering the significant impact of surgery on the brain and recurrent GBM, we survey a brief history of orthotopic models of GBM surgical resection.
Collapse
Affiliation(s)
- Kathryn M Moore
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States
| | - Ananya B Murthy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Elizabeth G Graham-Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kristy M Ainslie
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27599, United States.,Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
11
|
Biofunctionalization of Textile Materials. 2. Antimicrobial Modification of Poly(lactide) (PLA) Nonwoven Fabricsby Fosfomycin. Polymers (Basel) 2020; 12:polym12040768. [PMID: 32244602 PMCID: PMC7240420 DOI: 10.3390/polym12040768] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 01/19/2023] Open
Abstract
This research is focused on obtaining antimicrobial hybrid materials consisting of poly(lactide) nonwoven fabrics and using phosphoro-organic compound—fosfomycin—as a coating and modifying agent. Polylactide (PLA) presents biodegradable polymer with multifunctional application, widely engaged in medical related areas. Fosfomycin as functionalized phosphonates presents antibiotic properties expressed by broad spectrum of antimicrobial properties. The analysis of these biofunctionalized nonwoven fabrics processed by the melt-blown technique, included: scanning electron microscopy (SEM), UV/VIS transmittance, FTIR spectrometry, air permeability. The functionalized nonwovens were tested on microbial activity tests against colonies of gram-positive (Staphylococcus aureus) and gram-negative (Escherichia coli) bacteria.
Collapse
|