1
|
Tam TLD, Lin M, Chien SW, Xu J. Facile Synthesis of Solubilizing a Group-Free, Solution-Processable p-Type Ladder Conjugated Polymer and Its Thermoelectric Properties. ACS Macro Lett 2022; 11:110-115. [PMID: 35574790 DOI: 10.1021/acsmacrolett.1c00696] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report the synthesis of a new solubilizing group-free, solution-processable p-type ladder conjugated polymer, 6H-pyrrolo[3,2-b:4,5-b']bis[1,4]benzothiazine ladder (PBBTL) polymer by using a polyphosphoric acid (PPA) and phenylphosphonic acid (PhPO3H2) 1:1 binary acid solvent system together with careful control of reaction kinetics. With a good intrinsic viscosity of 3.69 dL/g in methanesulfonic acid (MSA), good quality PBBTL films can be obtained via spin-coating. Intrinsic thin film properties and thermoelectric performance of PBBTL were evaluated, making it the second solubilizing group-free, solution-processable ladder-type conjugated polymer after BBL to be used for thin-film polymer electronics. While our preliminary thermoelectric performance of the FeCl3-doped PBBTL films is modest, we believe that many opportunities lie ahead for PBBTL and hope that its successful synthesis using the new PPA:PhPO3H2 binary acid solvent system will inspire synthetic organic chemists to relook into solubilizing group-free, solution-processable ladder-type conjugated polymer systems.
Collapse
Affiliation(s)
- Teck Lip Dexter Tam
- Agency of Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Ming Lin
- Agency of Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Sheau Wei Chien
- Agency of Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Jianwei Xu
- Agency of Science, Technology and Research (A*STAR), Institute of Materials Research and Engineering (IMRE), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
2
|
Kim D, Yoon M, Lee J. Enhanced Performance of Cyclopentadithiophene-Based Donor-Acceptor-Type Semiconducting Copolymer Transistors Obtained by a Wire Bar-Coating Method. Polymers (Basel) 2021; 14:polym14010002. [PMID: 35012024 PMCID: PMC8747689 DOI: 10.3390/polym14010002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Herein, we report the fabrications of high-performance polymer field-effect transistors (PFETs) with wire bar-coated semiconducting polymer film as an active layer. For an active semiconducting material of the PFETs, we employed cyclopentadithiophene-alt-benzothiadiazole (CDT-BTZ) that is a D-A-type-conjugated copolymer consisting of a repeated electron-donating unit and an electron-accepting unit, and the other two CDT-based D-A-type copolymer analogues are cyclopentadithiophene-alt-fluorinated-benzothiadiazole (CDT-FBTZ) and cyclopentadithiophene-alt-thiadiazolopyridine (CDT-PTZ). The linear field-effect mobility values obtained from the transfer curve of the PFETs fabricated with the spin-coating were 0.04 cm2/Vs, 0.16 cm2/Vs, and 0.31 cm2/Vs, for CDT-BTZ, CDT-FBTZ, and CDT-PTZ, respectively, while the mobility values measured from the PFETs with the wire bar-coated CDT-BTZ film, CDT-FBTZ film, and CDT-PTZ film were 0.16 cm2/Vs, 0.28 cm2/Vs, and 0.95 cm2/Vs, respectively, which are about 2 to 4 times higher values than those of the PFETs with spin-coated films. These results revealed that the aligned molecular chain is beneficial for the D-A-type semiconducting copolymer even though the charge transport in the D-A-type semiconducting copolymer is known to be less critical to the degree of disorder in film.
Collapse
Affiliation(s)
- Doyeon Kim
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Korea; (D.K.); (M.Y.)
| | - Minho Yoon
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Korea; (D.K.); (M.Y.)
| | - Jiyoul Lee
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Korea; (D.K.); (M.Y.)
- Department of Nanotechnology Engineering, Pukyong National University, Busan 48513, Korea
- Correspondence:
| |
Collapse
|
3
|
Bhosale SV, Al Kobaisi M, Jadhav RW, Morajkar PP, Jones LA, George S. Naphthalene diimides: perspectives and promise. Chem Soc Rev 2021; 50:9845-9998. [PMID: 34308940 DOI: 10.1039/d0cs00239a] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this review, we describe the developments in the field of naphthalene diimides (NDIs) from 2016 to the presentday. NDIs are shown to be an increasingly interesting class of molecules due to their electronic properties, large electron deficient aromatic cores and tendency to self-assemble into functional structures. Almost all NDIs possess high electron affinity, good charge carrier mobility, and excellent thermal and oxidative stability, making them promising candidates for applications in organic electronics, photovoltaic devices, and flexible displays. NDIs have also been extensively studied due to their potential real-world uses across a wide variety of applications including supramolecular chemistry, sensing, host-guest complexes for molecular switching devices, such as catenanes and rotaxanes, ion-channels, catalysis, and medicine and as non-fullerene accepters in solar cells. In recent years, NDI research with respect to supramolecular assemblies and mechanoluminescent properties has also gained considerable traction. Thus, this review will assist a wide range of readers and researchers including chemists, physicists, biologists, medicinal chemists and materials scientists in understanding the scope for development and applicability of NDI dyes in their respective fields through a discussion of the main properties of NDI derivatives and of the status of emerging applications.
Collapse
Affiliation(s)
- Sheshanath V Bhosale
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Mohammad Al Kobaisi
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Ratan W Jadhav
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Pranay P Morajkar
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa-403 206, India.
| | - Lathe A Jones
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Subi George
- New Chemistry Unit (NCU), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur PO, Bangalore-560064, India
| |
Collapse
|
4
|
Kalin AJ, Che S, Wang C, Mu AU, Duka EM, Fang L. Solution-Processable Porous Nanoparticles of a Conjugated Ladder Polymer Network. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alexander J. Kalin
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843-3255, United States
| | - Sai Che
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843-3255, United States
| | - Chenxu Wang
- Department of Materials Science & Engineering, Texas A&M University, 3003 TAMU, College Station, Texas 77843-3003, United States
| | - Anthony U. Mu
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843-3255, United States
| | - E. Meir Duka
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843-3255, United States
| | - Lei Fang
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843-3255, United States
- Department of Materials Science & Engineering, Texas A&M University, 3003 TAMU, College Station, Texas 77843-3003, United States
| |
Collapse
|
5
|
Chen S, Liu F, Wang C, Shen J, Wu Y. Simple Route to Synthesize Fully Conjugated Ladder Isomer Copolymers with Carbazole Units. Polymers (Basel) 2019; 11:polym11101619. [PMID: 31591357 PMCID: PMC6835825 DOI: 10.3390/polym11101619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 11/25/2022] Open
Abstract
Two isomer polymers, P3 and P6, with fully conjugated ladder structures are presented by simple synthetic routes. The well-defined structures of fully conjugated ladder polymers P3 and P6 were ensured by the high yields of every reaction step. The fully rigid ladder structures were confirmed by nuclear magnetic resonance (NMR), fourier transform infrared spectroscopy (FTIR), and photophysical test. Polymers P3 and P6 with bulky alkyl side chains exhibit good solution processability and desirable thermostable properties. After the intramolecular cyclization reaction, the band gaps of polymers P3 and P6 become lower (2.86 eV and 2.66 eV, respectively) compared with polymers P1 and P4. This initial study provides insight for the rational design of fully ladder-conjugated isomeric polymers with well-defined structures.
Collapse
Affiliation(s)
- Shuang Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
| | - Feng Liu
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
- College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Chao Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
| | - Jinghui Shen
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
| | - Yonggang Wu
- College of Chemistry and Environmental Science, Hebei University, Baoding, 071002, China.
| |
Collapse
|