1
|
Zheng LX, Yu Q, Peng L, Li Q. Magnetically targeted lidocaine sustained-release microspheres: optimization, pharmacokinetics, and pharmacodynamic radius of effect. Reg Anesth Pain Med 2024:rapm-2024-105634. [PMID: 39223097 DOI: 10.1136/rapm-2024-105634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE This study aimed to optimize the formulation of magnetically targeted lidocaine microspheres, reduce the microsphere particle size, and increase the drug loading and encapsulation rate of lidocaine. The optimized microspheres were characterized, and their pharmacokinetics and effective radii of action were studied. METHODS The preparation of magnetically targeted lidocaine microspheres was optimized using ultrasonic emulsification-solvent evaporation. The Box-Behnken design method and response surface method were used for optimization. The optimized microspheres were characterized and tested for their in vitro release. Blood concentrations were analyzed using a non-compartment model, and the main pharmacokinetic parameters (half-life (t1/2 ), maximum blood concentration, area under the blood concentration-time curve (AUC), time to peak (Tmax ), and mean retention time (MRT) were calculated. Pathological sections were stained to study the safety of the microsphere tissues. A rabbit sciatic nerve model was used to determine the "standard time (t0 )" and effective radius of the microspheres. RESULTS The optimized lidocaine microspheres exhibited significantly reduced particle size and increased drug loading and encapsulation rates. Pharmacokinetic experiments showed that the t1/2 , Tmax , and MRT of magnetically targeted lidocaine microspheres were significantly prolonged in the magnetic field, and the AUC0-48 and AUC0-∞ were significantly decreased. Its pharmacodynamic radius was 31.47 mm. CONCLUSION Magnetically targeted lidocaine microspheres provide sustained long-lasting release, neurotargeting, nerve blocking, and high tissue safety. This preparation has a significantly low blood concentration and a slow release in vivo, which can reduce local anesthetic entry into the blood. This may be a novel and effective method for improving postoperative comfort and treating chronic pain. This provides a countermeasure for exploring the size of the magnetic field for the application of magnetic drug-carrying materials.
Collapse
Affiliation(s)
- Ling-Xi Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- Department of Anesthesiology, Affiliated Hospital of Southwest Jiaotong University,Chengdu Third People's Hospital of, Chengdu, Sichuan, China
| | - Qian Yu
- Urban Vocational College of Sichuan, Chengdu, Sichuan, China
| | - Lin Peng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
- Department of Anesthesiology, Affiliated Hospital of Southwest Jiaotong University,Chengdu Third People's Hospital of, Chengdu, Sichuan, China
| | - Qiang Li
- Department of Anesthesiology, Affiliated Hospital of Southwest Jiaotong University,Chengdu Third People's Hospital of, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Zheng LX, Yu Q, Li Q, Zheng CD. Targeted local anesthesia: a novel slow-release Fe 3O 4-lidocaine-PLGA microsphere endowed with a magnetic targeting function. J Anesth 2024; 38:232-243. [PMID: 38310577 DOI: 10.1007/s00540-023-03305-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 12/25/2023] [Indexed: 02/06/2024]
Abstract
PURPOSE Lidocaine microspheres can prolong the analgesic time to 24-48 h, which still cannot meet the need of postoperative analgesia lasting more than 3 days. Therefore, we added Fe3O4 to the lidocaine microspheres and used an applied magnetic field to attract Fe3O4 to fix the microspheres around the target nerves, reducing the diffusion of magnetic lidocaine microspheres to the surrounding tissues and prolonging the analgesic time. METHODS Fe3O4-lidocaine-PLGA microspheres were prepared by the complex-emulsion volatilization method to characterize and study the release properties in vitro. The neural anchoring properties and in vivo morphology of the drug were obtained by magnetic resonance imaging. The nerve blocking effect and analgesic effect of magnetic lidocaine microspheres were evaluated by animal experiments. RESULTS The mean diameter of magnetically responsive lidocaine microspheres: 9.04 ± 3.23 μm. The encapsulation and drug loading of the microspheres were 46.18 ± 3.26% and 6.02 ± 1.87%, respectively. Magnetic resonance imaging showed good imaging of Fe3O4-Lidocain-PLGA microspheres, a drug-carrying model that slowed down the diffusion of the microspheres in the presence of an applied magnetic field. Animal experiments demonstrated that this preparation had a significantly prolonged nerve block, analgesic effect, and a nerve anchoring function. CONCLUSION Magnetically responsive lidocaine microspheres can prolong analgesia by slowly releasing lidocaine, which can be immobilized around the nerve by a magnetic field on the body surface, avoiding premature diffusion of the microspheres to surrounding tissues and improving drug targeting.
Collapse
Affiliation(s)
- Ling-Xi Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Qian Yu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Qiang Li
- Department of Anesthesiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, 19 Yangshi Street, Qingyang District, Chengdu, 610031, Sichuan, China
| | - Chuan-Dong Zheng
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
- Department of Anesthesiology, The Third People's Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, 19 Yangshi Street, Qingyang District, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
3
|
Skosana P, Mudenda S, Demana PH, Witika BA. Exploring Nanotechnology as a Strategy to Circumvent Antimicrobial Resistance in Bone and Joint Infections. ACS OMEGA 2023; 8:15865-15882. [PMID: 37179611 PMCID: PMC10173345 DOI: 10.1021/acsomega.3c01225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
Bone and joint infections (BJIs) are difficult to treat, necessitating antimicrobial therapy at high doses for an extended period of time, in some cases different from our local guidelines. As a consequence of the rise in antimicrobial-resistant organisms, drugs that were previously reserved for last-line defense are now being used as first line treatment, and the pill burden and adverse effects on patients are leading to nonadherence, encouraging antimicrobial resistance (AMR) to these last-resort medicines. Nanodrug delivery is the field of pharmaceutical sciences and drug delivery which combines nanotechnology with chemotherapy and/or diagnostics to improve treatment and diagnostic outcomes by targeting specific cells or tissues affected. Delivery systems based on lipids, polymers, metals, and sugars have been used in an attempt to provide a way around AMR. This technology has the potential to improve drug delivery by targeting the site of infection and using the appropriate amount of antibiotics to treat BJIs caused by highly resistant organisms. This Review aims to provide an in-depth examination of various nanodrug delivery systems used to target the causative agents in BJI.
Collapse
Affiliation(s)
- Phumzile
P. Skosana
- Department
of Clinical Pharmacy, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
| | - Steward Mudenda
- Department
of Pharmacy, School of Health Sciences, University of Zambia, Lusaka 10101, Zambia
| | - Patrick H. Demana
- Department
of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
| | - Bwalya A. Witika
- Department
of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
| |
Collapse
|
4
|
Hsu YH, Yu YH, Chou YC, Lu CJ, Lin YT, Ueng SWN, Liu SJ. Sustained Release of Antifungal and Antibacterial Agents from Novel Hybrid Degradable Nanofibers for the Treatment of Polymicrobial Osteomyelitis. Int J Mol Sci 2023; 24:ijms24043254. [PMID: 36834663 PMCID: PMC9966905 DOI: 10.3390/ijms24043254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
This study aimed to develop a drug delivery system with hybrid biodegradable antifungal and antibacterial agents incorporated into poly lactic-co-glycolic acid (PLGA) nanofibers, facilitating an extended release of fluconazole, vancomycin, and ceftazidime to treat polymicrobial osteomyelitis. The nanofibers were assessed using scanning electron microscopy, tensile testing, water contact angle analysis, differential scanning calorimetry, and Fourier-transform infrared spectroscopy. The in vitro release of the antimicrobial agents was assessed using an elution method and a high-performance liquid chromatography assay. The in vivo elution pattern of nanofibrous mats was assessed using a rat femoral model. The experimental results demonstrated that the antimicrobial agent-loaded nanofibers released high levels of fluconazole, vancomycin, and ceftazidime for 30 and 56 days in vitro and in vivo, respectively. Histological assays revealed no notable tissue inflammation. Therefore, hybrid biodegradable PLGA nanofibers with a sustainable release of antifungal and antibacterial agents may be employed for the treatment of polymicrobial osteomyelitis.
Collapse
Affiliation(s)
- Yung-Heng Hsu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
| | - Yi-Hsun Yu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
| | - Ying-Chao Chou
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
| | - Chia-Jung Lu
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Yu-Ting Lin
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan 33302, Taiwan
| | - Steve Wen-Neng Ueng
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
- Correspondence: (S.W.-N.U.); (S.-J.L.)
| | - Shih-Jung Liu
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan
- Department of Mechanical Engineering, Chang Gung University, Tao-Yuan 33302, Taiwan
- Correspondence: (S.W.-N.U.); (S.-J.L.)
| |
Collapse
|
5
|
Qin Z, Lv G, Wang T, Li H, Zhao B, Chen M, Gang H, Tan Y, Jia H. The delivery of nanoparticles improves the pharmacokinetic properties of celecoxib to open a therapeutic window for oral administration of insoluble drugs. Biomed Chromatogr 2023; 37:e5552. [PMID: 36408991 DOI: 10.1002/bmc.5552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/30/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
A sensitive and reliable LC-MS/MS method is established and validated to determine the concentration of celecoxib, in the serum of cynomolgus monkey, using celecoxib-D7 as an internal standard. The pharmacokinetic process was investigated after giving Celebrex, celecoxib nanoparticles (CXB-NPs) and hyaluronic acid celecoxib nanoparticles (HA-CXB-NPs) by intragastric (i.g.) administration. Chromatographic separation was performed with a C18 column (2.1 × 100 mm, 2.6 μm) at 40°C with a mobile phase of 2‰ HCOOH in water and acetonitrile. The mass spectral acquisition was then performed in the multiple reaction monitoring mode, with negative ESI ion at m/z 380.0 → 316.0 and m/z 387.1 → 323.1 for celecoxib and celecoxib-D7, respectively. Good linearity was observed over the concentration range from 3 to 2,000 ng/ml (R2 = 0.9954). The intra- and inter-day precision and accuracy, matrix effect and extraction recovery, as well as stability, all met the determination requirements of biological samples. The pharmacokinetic parameters of Celebrex, CXB-NPs and HA-CXB-NPs were determined as: area under the curve, 1,855.98 ± 346.59, 1,908.00 ± 1,130.24 and 2,164.48 ± 657.47 h·ng/ml; peak concentration, 261.08 ± 113.26, 261.12 ± 94.67 and 263.34 ± 151.78 μg/L; time to peak concentration, 2.00 ± 1.22, 4.00 ± 0.00 and 3.60 ± 0.89 h; half-life, 4.39 ± 1.26, 2.33 ± 0.94 and 4.92 ± 3.13 h; relative bioavailability, 102.80 ± 49.62 and 116.63 ± 25.55%. The validated method was successfully applied to the pharmacokinetic study of celecoxib in cynomolgus monkey, after i.g. administration. The preparation of the nanoparticles of celecoxib and the modification of hyaluronic acid on the surface of nanoparticles could improve the bioavailability and prolong the circulation of celecoxib in vivo, which could lay the foundation for further development of celecoxib nanoparticles.
Collapse
Affiliation(s)
- Zhenmiao Qin
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Geng Lv
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Tong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Hailong Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Beicheng Zhao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Meili Chen
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Hou Gang
- Department of Orthopaedics, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yinfeng Tan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, School of Pharmacy, Hainan Medical University, Haikou, China
| | - Huanhuan Jia
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| |
Collapse
|
6
|
Ali A, Zaman A, Sayed E, Evans D, Morgan S, Samwell C, Hall J, Arshad MS, Singh N, Qutachi O, Chang MW, Ahmad Z. Electrohydrodynamic atomisation driven design and engineering of opportunistic particulate systems for applications in drug delivery, therapeutics and pharmaceutics. Adv Drug Deliv Rev 2021; 176:113788. [PMID: 33957180 DOI: 10.1016/j.addr.2021.04.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022]
Abstract
Electrohydrodynamic atomisation (EHDA) technologies have evolved significantly over the past decade; branching into several established and emerging healthcare remits through timely advances in the engineering sciences and tailored conceptual process designs. More specifically for pharmaceutical and drug delivery spheres, electrospraying (ES) has presented itself as a high value technique enabling a plethora of different particulate structures. However, when coupled with novel formulations (e.g. co-flows) and innovative device aspects (e.g., materials and dimensions), core characteristics of particulates are manipulated and engineered specifically to deliver an application driven need, which is currently lacking, ranging from imaging and targeted delivery to controlled release and sensing. This demonstrates the holistic nature of these emerging technologies; which is often overlooked. Parametric driven control during particle engineering via the ES method yields opportunistic properties when compared to conventional methods, albeit at ambient conditions (e.g., temperature and pressure), making this extremely valuable for sensitive biologics and molecules of interest. Furthermore, several processing (e.g., flow rate, applied voltage and working distance) and solution (e.g., polymer concentration, electrical conductivity and surface tension) parameters impact ES modes and greatly influence the production of resulting particles. The formation of a steady cone-jet and subsequent atomisation during ES fabricates particles demonstrating monodispersity (or near monodispersed), narrow particle size distributions and smooth or textured morphologies; all of which are successfully incorporated in a one-step process. By following a controlled ES regime, tailored particles with various intricate structures (hollow microspheres, nanocups, Janus and cell-mimicking nanoparticles) can also be engineered through process head modifications central to the ES technique (single-needle spraying, coaxial, multi-needle and needleless approaches). Thus, intricate formulation design, set-up and combinatorial engineering of the EHDA process delivers particulate structures with a multitude of applications in tissue engineering, theranostics, bioresponsive systems as well as drug dosage forms for specific delivery to diseased or target tissues. This advanced technology has great potential to be implemented commercially, particularly on the industrial scale for several unmet pharmaceutical and medical challenges and needs. This review focuses on key seminal developments, ending with future perspectives addressing obstacles that need to be addressed for future advancement.
Collapse
|
7
|
Wang J, Wang L. Novel therapeutic interventions towards improved management of septic arthritis. BMC Musculoskelet Disord 2021; 22:530. [PMID: 34107951 PMCID: PMC8191206 DOI: 10.1186/s12891-021-04383-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/18/2021] [Indexed: 01/19/2023] Open
Abstract
Septic arthritis (SA) represents a medical emergency that needs immediate diagnosis and urgent treatment. Despite aggressive treatment and rapid diagnosis of the causative agent, the mortality and lifelong disability, associated with septic arthritis remain high as close to 11%. Moreover, with the rise in drug resistance, the rates of failure of conventional antibiotic therapy have also increased. Among the etiological agents frequently isolated from cases of septic arthritis, Staphylococcus aureus emerges as a dominating pathogen, and to worsen, the rise in methicillin-resistant S. aureus (MRSA) isolates in bone and joint infections is worrisome. MRSA associated cases of septic arthritis exhibit higher mortality, longer hospital stay, and higher treatment failure with poorer clinical outcomes as compared to cases caused by the sensitive strain i.e methicillin-sensitive S. aureus (MSSA). In addition to this, equal or even greater damage is imposed by the exacerbated immune response mounted by the patient’s body in a futile attempt to eradicate the bacteria. The antibiotic therapy may not be sufficient enough to control the progression of damage to the joint involved thus, adding to higher mortality and disability rates despite the prompt and timely start of treatment. This situation implies that efforts and focus towards studying/understanding new strategies for improved management of sepsis arthritis is prudent and worth exploring. The review article aims to give a complete insight into the new therapeutic approaches studied by workers lately in this field. To the best of our knowledge studies highlighting the novel therapeutic strategies against septic arthritis are limited in the literature, although articles on pathogenic mechanism and choice of antibiotics for therapy, current treatment algorithms followed have been discussed by workers in the past. The present study presents and discusses the new alternative approaches, their mechanism of action, proof of concept, and work done so far towards their clinical success. This will surely help to enlighten the researchers with comprehensive knowledge of the new interventions that can be used as an adjunct therapy along with conventional treatment protocol for improved success rates.
Collapse
Affiliation(s)
- Jian Wang
- Department of Nursing, The Third Hospital of Jinan, Shandong Province, Jinan, 250132, China.
| | - Liucai Wang
- Hand and Foot Surgery, Shandong Provincial Hospital, Jinan, 250000, China
| |
Collapse
|
8
|
Chou PY, Chou YC, Lai YH, Lin YT, Lu CJ, Liu SJ. Fabrication of Drug-Eluting Nano-Hydroxylapatite Filled Polycaprolactone Nanocomposites Using Solution-Extrusion 3D Printing Technique. Polymers (Basel) 2021; 13:polym13030318. [PMID: 33498261 PMCID: PMC7863968 DOI: 10.3390/polym13030318] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 01/08/2023] Open
Abstract
Polycaprolactone/nano-hydroxylapatite (PCL/nHA) nanocomposites have found use in tissue engineering and drug delivery owing to their good biocompatibility with these types of applications in addition to their mechanical characteristics. Three-dimensional (3D) printing of PCL/nHA nanocomposites persists as a defiance mostly because of the lack of commercial filaments for the conventional fused deposition modeling (FDM) method. In addition, as the composites are prepared using FDM for the purpose of delivering pharmaceuticals, thermal energy can destroy the embedded drugs and biomolecules. In this report, we investigated 3D printing of PCL/nHA using a lab-developed solution-extrusion printer, which consists of an extrusion feeder, a syringe with a dispensing nozzle, a collection table, and a command port. The effects of distinct printing variables on the mechanical properties of nanocomposites were investigated. Drug-eluting nanocomposite screws were also prepared using solution-extrusion 3D printing. The empirical outcomes suggest that the tensile properties of the 3D-printed PCL/nHA nanocomposites increased with the PCL/nHA-to-dichloromethane (DCM) ratio, fill density, and print orientation but decreased with an increase in the moving speed of the dispensing tip. Furthermore, printed drug-eluting PCL/nHA screws eluted high levels of antimicrobial vancomycin and ceftazidime over a 14-day period. Solution-extrusion 3D printing demonstrated excellent capabilities for fabricating drug-loaded implants for various medical applications.
Collapse
Affiliation(s)
- Pang-Yun Chou
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (P.-Y.C.); (Y.-H.L.); (Y.-T.L.); (C.-J.L.)
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Ying-Chao Chou
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan;
| | - Yu-Hsuan Lai
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (P.-Y.C.); (Y.-H.L.); (Y.-T.L.); (C.-J.L.)
| | - Yu-Ting Lin
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (P.-Y.C.); (Y.-H.L.); (Y.-T.L.); (C.-J.L.)
| | - Chia-Jung Lu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (P.-Y.C.); (Y.-H.L.); (Y.-T.L.); (C.-J.L.)
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan; (P.-Y.C.); (Y.-H.L.); (Y.-T.L.); (C.-J.L.)
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital-Linkou, Taoyuan 33305, Taiwan;
- Correspondence: ; Tel.: +886-3-2118166; Fax: +886-3-2118558
| |
Collapse
|
9
|
Vedadghavami A, Zhang C, Bajpayee AG. Overcoming negatively charged tissue barriers: Drug delivery using cationic peptides and proteins. NANO TODAY 2020; 34:100898. [PMID: 32802145 PMCID: PMC7425807 DOI: 10.1016/j.nantod.2020.100898] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Negatively charged tissues are ubiquitous in the human body and are associated with a number of common diseases yet remain an outstanding challenge for targeted drug delivery. While the anionic proteoglycans are critical for tissue structure and function, they make tissue matrix dense, conferring a high negative fixed charge density (FCD) that makes drug penetration through the tissue deep zones and drug delivery to resident cells extremely challenging. The high negative FCD of these tissues is now being utilized by taking advantage of electrostatic interactions to create positively charged multi-stage delivery methods that can sequentially penetrate through the full thickness of tissues, create a drug depot and target cells. After decades of work on attempting delivery using strong binding interactions, significant advances have recently been made using weak and reversible electrostatic interactions, a characteristic now considered essential to drug penetration and retention in negatively charged tissues. Here we discuss these advances using examples of negatively charged tissues (cartilage, meniscus, tendons and ligaments, nucleus pulposus, vitreous of eye, mucin, skin), and delve into how each of their structures, tissue matrix compositions and high negative FCDs create barriers to drug entry and explore how charge interactions are being used to overcome these barriers. We review work on tissue targeting cationic peptide and protein-based drug delivery, compare and contrast drug delivery designs, and also present examples of technologies that are entering clinical trials. We also present strategies on further enhancing drug retention within diseased tissues of lower FCD by using synergistic effects of short-range binding interactions like hydrophobic and H-bonds that stabilize long-range charge interactions. As electrostatic interactions are incorporated into design of drug delivery materials and used as a strategy to create properties that are reversible, tunable and dynamic, bio-electroceuticals are becoming an exciting new direction of research and clinical work.
Collapse
Affiliation(s)
- Armin Vedadghavami
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Chenzhen Zhang
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Ambika G. Bajpayee
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
- Department of Mechanical Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
10
|
Abdalla HB, Napimoga MH, Macedo CG, Bonfante R, De Araujo D, de Mello NF, Carvalho LB, Fraceto LF, Clemente-Napimoga JT. Poloxamer micellar system for intra-articular injection of 15-deoxy-Δ12,14-prostaglandin J2 with improved bioavailability and anti-inflammatory properties in the temporomandibular joint of rats. Int J Pharm 2020; 583:119383. [DOI: 10.1016/j.ijpharm.2020.119383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/20/2020] [Accepted: 04/25/2020] [Indexed: 02/07/2023]
|
11
|
Chandrasekaran U, Luo X, Wang Q, Shu K. Are There Unidentified Factors Involved in the Germination of Nanoprimed Seeds? FRONTIERS IN PLANT SCIENCE 2020; 11:832. [PMID: 32587599 PMCID: PMC7298061 DOI: 10.3389/fpls.2020.00832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/25/2020] [Indexed: 05/03/2023]
Affiliation(s)
- Umashankar Chandrasekaran
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Xiaofeng Luo
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Qichao Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Kai Shu
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
- *Correspondence: Kai Shu,
| |
Collapse
|
12
|
Lin CH, Lane HY. The Role of N-Methyl-D-Aspartate Receptor Neurotransmission and Precision Medicine in Behavioral and Psychological Symptoms of Dementia. Front Pharmacol 2019; 10:540. [PMID: 31191302 PMCID: PMC6539199 DOI: 10.3389/fphar.2019.00540] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/29/2019] [Indexed: 12/16/2022] Open
Abstract
While the world’s population is aging, the prevalence of dementia and the associated behavioral and psychological symptoms of dementia (BPSD) rises rapidly. BPSD are associated with worsening of cognitive function and poorer prognosis. No pharmacological treatment has been approved to be beneficial for BPSD to date. Dysfunction of the N-methyl-D-aspartate receptor (NMDAR)-related neurotransmission leads to cognitive impairment and behavioral changes, both of which are core symptoms of BPSD. Memantine, an NMDAR partial antagonist, is used to treat moderate to severe Alzheimer’s disease (AD). On the other hand, a D-amino acid oxidase inhibitor improved early-phase AD. Whether to enhance or to attenuate the NMDAR may depend on the phases of dementia. It will be valuable to develop biomarkers indicating the activity of NMDAR, particularly in BPSD. In addition, recent reports suggest that gender difference exists in the treatment of dementia. Selecting subpopulations of patients with BPSD who are prone to improvement with treatment would be important. We reviewed literatures regarding the treatment of BPSD, focusing on the NMDAR-related modulation and precision medicine. Future studies examining the NMDAR modulators with the aid of potential biomarkers to tailor the treatment for individualized patients with BPSD are warranted.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| |
Collapse
|