1
|
Brazaca LC, Imamura AH, Blasques RV, Camargo JR, Janegitz BC, Carrilho E. The use of biological fluids in microfluidic paper-based analytical devices (μPADs): Recent advances, challenges and future perspectives. Biosens Bioelectron 2024; 246:115846. [PMID: 38006702 DOI: 10.1016/j.bios.2023.115846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
The use of microfluidic paper-based analytical devices (μPADs) for aiding medical diagnosis is a growing trend in the literature mainly due to their low cost, easy use, simple manufacturing, and great potential for application in low-resource settings. Many important biomarkers (proteins, ions, lipids, hormones, DNA, RNA, drugs, whole cells, and more) and biofluids are available for precise detection and diagnosis. We have reviewed the advances μPADs in medical diagnostics have achieved in the last few years, focusing on the most common human biofluids (whole blood/plasma, sweat, urine, tears, and saliva). The challenges of detecting specific biomarkers in each sample are discussed, along with innovative techniques that overcome such limitations. Finally, the difficulties of commercializing μPADs are considered, and future trends are presented, including wearable devices and integrating multiple steps in a single platform.
Collapse
Affiliation(s)
- Laís Canniatti Brazaca
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil.
| | - Amanda Hikari Imamura
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil
| | - Rodrigo Vieira Blasques
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Jéssica Rocha Camargo
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Bruno Campos Janegitz
- Departamento de Ciências da Natureza, Matemática e Educação, Universidade Federal de São Carlos, Araras, SP, 13600-970, Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, 13566-590, Brazil; Instituto Nacional de Ciência e Tecnologia de Bioanalítica-INCTBio, Campinas, SP, 13083-970, Brazil
| |
Collapse
|
2
|
Deliorman M, Ali DS, Qasaimeh MA. Next-Generation Microfluidics for Biomedical Research and Healthcare Applications. Biomed Eng Comput Biol 2023; 14:11795972231214387. [PMID: 38033395 PMCID: PMC10683381 DOI: 10.1177/11795972231214387] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Microfluidic systems offer versatile biomedical tools and methods to enhance human convenience and health. Advances in these systems enables next-generation microfluidics that integrates automation, manipulation, and smart readout systems, as well as design and three-dimensional (3D) printing for precise production of microchannels and other microstructures rapidly and with great flexibility. These 3D-printed microfluidic platforms not only control the complex fluid behavior for various biomedical applications, but also serve as microconduits for building 3D tissue constructs-an integral component of advanced drug development, toxicity assessment, and accurate disease modeling. Furthermore, the integration of other emerging technologies, such as advanced microscopy and robotics, enables the spatiotemporal manipulation and high-throughput screening of cell physiology within precisely controlled microenvironments. Notably, the portability and high precision automation capabilities in these integrated systems facilitate rapid experimentation and data acquisition to help deepen our understanding of complex biological systems and their behaviors. While certain challenges, including material compatibility, scaling, and standardization still exist, the integration with artificial intelligence, the Internet of Things, smart materials, and miniaturization holds tremendous promise in reshaping traditional microfluidic approaches. This transformative potential, when integrated with advanced technologies, has the potential to revolutionize biomedical research and healthcare applications, ultimately benefiting human health. This review highlights the advances in the field and emphasizes the critical role of the next generation microfluidic systems in advancing biomedical research, point-of-care diagnostics, and healthcare systems.
Collapse
Affiliation(s)
| | - Dima Samer Ali
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, UAE
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY, USA
| | - Mohammad A Qasaimeh
- Division of Engineering, New York University Abu Dhabi (NYUAD), Abu Dhabi, UAE
- Department of Mechanical and Aerospace Engineering, New York University, New York, NY, USA
| |
Collapse
|
3
|
Abstract
For diabetics, taking regular blood glucose measurements is crucial. However, traditional blood glucose monitoring methods are invasive and unfriendly to diabetics. Recent studies have proposed a biofluid-based glucose sensing technique that creatively combines wearable devices with noninvasive glucose monitoring technology to enhance diabetes management. This is a revolutionary advance in the diagnosis and management of diabetes, reflects the thoughtful modernization of medicine, and promotes the development of digital medicine. This paper reviews the research progress of noninvasive continuous blood glucose monitoring (CGM), with a focus on the biological liquids that replace blood in monitoring systems, the technical principles of continuous noninvasive glucose detection, and the output and calibration of sensor signals. In addition, the existing limits of noninvasive CGM systems and prospects for the future are discussed. This work serves as a resource for further promoting the development of noninvasive CGM systems.
Collapse
Affiliation(s)
- Yilin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing, 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| |
Collapse
|
4
|
Abstract
![]()
Personalized and
point-of-care (POC) diagnoses are critical for
ocular physiology and disease diagnosis. Real-time monitoring and
continuous sampling abilities of tear fluid and user-friendliness
have become the key characteristics for the applied ophthalmic techniques.
Fluorescence technologies, as one of the most popular methods that
can fulfill the requirements of clinical ophthalmic applications for
optical sensing, have been raised and applied for tear sensing and
diagnostic platforms in recent decades. Wearable sensors in this case
have been increasingly developed for ocular diagnosis. Contact lenses,
as one of the commercialized and popular tools for ocular dysfunction,
have been developed as a platform for fluorescence sensing in tears
diagnostics and real-time monitoring. Numbers of biochemical analytes
have been examined through developed fluorescent contact lens sensors,
including pH values, electrolytes, glucose, and enzymes. These sensors
have been proven for monitoring ocular conditions, enhancing and detecting
medical treatments, and tracking efficiency of related ophthalmic
surgeries at POC settings. This review summarizes the applied ophthalmic
fluorescence sensing technologies in tears for ocular diagnosis and
monitoring. In addition, the cooperation of fabricated fluorescent
sensor with mobile phone readout devices for diagnosing ocular diseases
with specific biomarkers continuously is also discussed. Further perspectives
for the developments and applications of fluorescent ocular sensing
and diagnosing technologies are also provided.
Collapse
Affiliation(s)
- Yuqi Shi
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, United Kingdom
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, United Kingdom
| | - Nan Jiang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ali K. Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, United Kingdom
| |
Collapse
|
5
|
Lee HA, Lin PY, Solomatina AI, Koshevoy IO, Tunik SP, Lin HW, Pan SW, Ho ML. Glucose Sensing in Human Whole Blood Based on Near-Infrared Phosphors and Outlier Treatment with the Programming Language "R". ACS OMEGA 2022; 7:198-206. [PMID: 35036691 PMCID: PMC8757351 DOI: 10.1021/acsomega.1c04344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
A near-infrared paper-based analytical device (NIR-PAD) for glucose detection in whole blood was based on iridium(III) metal complexes embedded in a three-dimensional (3D) enzyme gel. These complexes emit NIR luminescence, can avoid interference from the color of blood, and increase the sensitivity of sensing glucose. The glucose reaction behaviors of another two different iridium(III) and platinum(II) complexes were also tested. When the glucose solution was added to the device, the oxidation of glucose by glucose oxidase caused oxygen consumption and increased the intensity of the phosphorescence emission. To the best of our knowledge, this is the first time that data have been treated with the programming language "R", which uses Tukey's test to identify the outliers in the data and calculate a median for establishing a calibration curve, in order to improve the accuracy of NIR-PADs for sensing glucose. Compared with other published devices, NIR-PADs exhibit a wider linear range (1-30 mM, [relative emission intensity] = 0.0250[glucose] + 0.0451, and R 2 = 0.9984), a low detection limit (0.7 mM), a short response time (<2 s), and a small sample volume (2 μL). Finally, blood specimens were obtained from 19 patients enrolled in Taipei Veterans General Hospital under an approved IRB protocol (Taiwan; 2017-12-002CC). The sensors exhibited remarkable characteristics for glucose detection in comparison with other methods, including the clinical method in hospitals as well as those without blood sample pretreatment or a dilution factor. The above results confirm that NIR-PAD sensors can be put to practical use for glucose detection.
Collapse
Affiliation(s)
- Hsia-An Lee
- Department
of Chemistry, Soochow University, 70 Linhsi Road,
Shihlin, Taipei 111, Taiwan
| | - Peng-Yi Lin
- Department
of Chemistry, Soochow University, 70 Linhsi Road,
Shihlin, Taipei 111, Taiwan
| | - Anastasia I. Solomatina
- Institute
of Chemistry, St. Petersburg State University, Universitetskii pr. 26, St. Petersburg 198504, Russia
| | - Igor O. Koshevoy
- Department
of Chemistry, University of Eastern Finland, Joensuu 80101, Finland
| | - Sergey P. Tunik
- Institute
of Chemistry, St. Petersburg State University, Universitetskii pr. 26, St. Petersburg 198504, Russia
| | - Hui-Wen Lin
- Department
of Mathematics, Soochow University, 70 Linhsi Road,
Shihlin, Taipei 111, Taiwan
| | - Sheng-Wei Pan
- Department
of Chest Medicine, Taipei Veterans General
Hospital, Taipei 11217, Taiwan
- School
of Medicine, National Yang Ming Chiao Tung
University, Taipei 11221, Taiwan
| | - Mei-Lin Ho
- Department
of Chemistry, Soochow University, 70 Linhsi Road,
Shihlin, Taipei 111, Taiwan
| |
Collapse
|
6
|
Fatema KN, Lim CS, Liu Y, Cho KY, Jung CH, Oh WC. 3D Modeling of Silver Doped ZrO 2 Coupled Graphene-Based Mesoporous Silica Quaternary Nanocomposite for a Nonenzymatic Glucose Sensing Effects. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:193. [PMID: 35055212 PMCID: PMC8779333 DOI: 10.3390/nano12020193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 01/27/2023]
Abstract
We described the novel nanocomposite of silver doped ZrO2 combined graphene-based mesoporous silica (ZrO2-Ag-G-SiO2,) in bases of low-cost and self-assembly strategy. Synthesized ZrO2-Ag-G-SiO2 were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDX), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, Nitrogen adsorption-desorption isotherms, X-ray photoelectron spectroscopy (XPS), and Diffuse Reflectance Spectroscopy (DRS). The ZrO2-Ag-G-SiO2 as an enzyme-free glucose sensor active material toward coordinate electro-oxidation of glucose was considered through cyclic voltammetry in significant electrolytes, such as phosphate buffer (PBS) at pH 7.4 and commercial urine. Utilizing ZrO2-Ag-G-SiO2, glucose detecting may well be finished with effective electrocatalytic performance toward organically important concentrations with the current reaction of 9.0 × 10-3 mAcm-2 and 0.05 mmol/L at the lowest potential of +0.2 V, thus fulfilling the elemental prerequisites for glucose detecting within the urine. Likewise, the ZrO2-Ag-G-SiO2 electrode can be worked for glucose detecting within the interferometer substances (e.g., ascorbic corrosive, lactose, fructose, and starch) in urine at proper pH conditions. Our results highlight the potential usages for qualitative and quantitative electrochemical investigation of glucose through the ZrO2-Ag-G-SiO2 sensor for glucose detecting within the urine concentration.
Collapse
Affiliation(s)
- Kamrun Nahar Fatema
- Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si 356-706, Korea; (K.N.F.); (C.-S.L.)
| | - Chang-Sung Lim
- Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si 356-706, Korea; (K.N.F.); (C.-S.L.)
| | - Yin Liu
- Anhui International Joint Research Center for Nano Carbon-Based Materials and Environmental Health, College of Materials Science and Engineering, Anhui University of Science & Technology, Huainan 232001, China;
| | - Kwang-Youn Cho
- Korea Institutes of Ceramic Engineering and Technology, Soho-ro, Jinju-si 52851, Korea;
| | - Chong-Hun Jung
- Decommissioning Technology Research Division, Korea Atomic Energy Research Institute, Yuseong, Daejeon 305-600, Korea;
| | - Won-Chun Oh
- Department of Advanced Materials Science & Engineering, Hanseo University, Seosan-si 356-706, Korea; (K.N.F.); (C.-S.L.)
- Anhui International Joint Research Center for Nano Carbon-Based Materials and Environmental Health, College of Materials Science and Engineering, Anhui University of Science & Technology, Huainan 232001, China;
| |
Collapse
|
7
|
Ortiz-Martínez M, Flores-DelaToba R, González-González M, Rito-Palomares M. Current Challenges and Future Trends of Enzymatic Paper-Based Point-of-Care Testing for Diabetes Mellitus Type 2. BIOSENSORS 2021; 11:482. [PMID: 34940239 PMCID: PMC8699572 DOI: 10.3390/bios11120482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022]
Abstract
A point-of-care (POC) can be defined as an in vitro diagnostic test that can provide results within minutes. It has gained enormous attention as a promising tool for biomarkers detection and diagnosis, as well as for screening of chronic noncommunicable diseases such as diabetes mellitus. Diabetes mellitus type 2 is one of the metabolic disorders that has grown exponentially in recent years, becoming one of the greatest challenges to health systems. Early detection and accurate diagnosis of this disorder are essential to provide adequate treatments. However, efforts to reduce incidence should remain not only in these stages but in developing continuous monitoring strategies. Diabetes-monitoring tools must be accessible and affordable; thus, POC platforms are attractive, especially paper-based ones. Paper-based POCs are simple and portable, can use different matrixes, do not require highly trained staff, and are less expensive than other platforms. These advantages enhance the viability of its application in low-income countries and hard-to-reach zones. This review aims to present a critical summary of the main components required to create a sensitive and affordable enzymatic paper-based POC, as well as an oriented analysis to highlight the main limitations and challenges of current POC devices for diabetes type 2 monitoring and future research opportunities in the field.
Collapse
Affiliation(s)
| | | | - Mirna González-González
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, NL, Mexico; (M.O.-M.); (R.F.-D.)
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, NL, Mexico; (M.O.-M.); (R.F.-D.)
| |
Collapse
|
8
|
Mehra N, Aqil M, Sultana Y. A grafted copolymer-based nanomicelles for topical ocular delivery of everolimus: Formulation, characterization, ex-vivo permeation, in-vitro ocular toxicity, and stability study. Eur J Pharm Sci 2021; 159:105735. [DOI: 10.1016/j.ejps.2021.105735] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/20/2020] [Accepted: 01/15/2021] [Indexed: 12/29/2022]
|
9
|
Phosphorescence-based ratiometric probes: Design, preparation and applications in sensing, imaging and biomedicine therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213694] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
He RY, Tseng HY, Lee HA, Liu YC, Koshevoy IO, Pan SW, Ho ML. Paper-based microfluidic devices based on 3D network polymer hydrogel for the determination of glucose in human whole blood. RSC Adv 2019; 9:32367-32374. [PMID: 35529755 PMCID: PMC9073200 DOI: 10.1039/c9ra04278d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 10/06/2019] [Indexed: 11/21/2022] Open
Abstract
In this study, optical microfluidic paper analytical devices (μPADs) for glucose detection from whole blood samples with a small sample volume (2 μL) have been developed on a single paper. In the proposed method, a mushroom-shaped analytical device contains a sample inlet zone and a detection zone. When blood is dripped onto the inlet region of a μPAD, the plasma diffuses to the detection region. The detection region is implanted with a metallic three-dimensional (3D) polymer hydrogel vehicle. The gel vehicle consists of a copper complex that responds to oxygen changes and glucose oxidase (GOx) immobilized inside the gel as a bioactivity preservative. The phosphorescence of the copper complex is enhanced by oxygen consumed by detection of glucose with a limit of detection (S/N = 3) of 0.44 mM, and the total analysis of the sample is completed within 1 min. The validity of the proposed research is demonstrated using control samples and real-world whole blood samples of glucose concentrations ranging from 3 to 200 mM, and the detection results are shown to be in agreement with those obtained using a glucometer. Attaining a simple device for analysing glucose in human whole blood without any pretreatment procedures and having a broad sensing range while consuming a small sample volume remain challenging; thus, our new analytical device is of great interest.
Collapse
Affiliation(s)
- Rong-Yu He
- Department of Chemistry, Soochow University No. 70, LinShih Rd., Shih-Lin Taipei 11102 Taiwan
| | - Hsin-Yi Tseng
- Department of Chemistry, Soochow University No. 70, LinShih Rd., Shih-Lin Taipei 11102 Taiwan
| | - Hsia-An Lee
- Department of Chemistry, Soochow University No. 70, LinShih Rd., Shih-Lin Taipei 11102 Taiwan
| | - Yu-Ci Liu
- Department of Chemistry, Soochow University No. 70, LinShih Rd., Shih-Lin Taipei 11102 Taiwan
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland 80101 Joensuu Finland
| | - Sheng-Wei Pan
- Department of Chest Medicine, Taipei Veterans General Hospital Taipei 11217 Taiwan
- School of Medicine, National Yang-Ming University Taipei 11221 Taiwan
- Institute of Public Health, National Yang-Ming University Taipei 11221 Taiwan
| | - Mei-Lin Ho
- Department of Chemistry, Soochow University No. 70, LinShih Rd., Shih-Lin Taipei 11102 Taiwan
| |
Collapse
|