1
|
Lamch Ł, Szukiewicz R. Entrapment of Amphipathic Drugs in Core-Shell Polymeric Nanoparticles under Batch Conditions─The Role of Control and Solubility Parameters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21186-21198. [PMID: 39316727 PMCID: PMC11465662 DOI: 10.1021/acs.langmuir.4c02721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 09/26/2024]
Abstract
The amphipathic bioactive compounds curcumin, resveratrol, and mitomycin C, which have similar solubility parameter component distributions, have been studied for encapsulation under batch conditions into core-shell nanocarriers composed of external hydrophobically functionalized polyelectrolytes and an inner matrix of polyesters or polyester blends: poly(l-lactide), poly(lactide-co-glycolide), and/or poly(ethylene succinate). Our contribution comprises determining the influence of process parameters on the properties and quality of the final products, namely core-shell nanoparticles loaded with appropriate drugs, according to process analysis technologymanagement. The crucial roles of the organic phase dosing rates and process temperatures were carefully investigated. Moreover, a technically feasible method of removing organic solvents from aqueous dispersions─stripping with inert gas─was employed and evaluated via FT-IR studies. The experiments were supported by the calculation and analysis of solubility parameters (δ) and dispersion (δd), polar (δp), and hydrogen bond (δh) components utilizing HSPiP software. The payload locus and sample morphology were studied via atomic force microscopy and X-ray photoelectron spectroscopy analyses with Ar+ sputtering. It was demonstrated that dosing rates of organic phases not exceeding ca. 0.5 mL/min per 1 L of aqueous dispersion of hydrophobically functionalized polyelectrolytes made it possible to obtain core-shell nanoparticles of ca. 100-150 nm with a very narrow polydispersity (PdI < 0.2). The locus of amphipathic payloads in nanocarriers, mostly within the core polymeric structure, was in good agreement with the results of solubility parameter component studies: water-insoluble polyesters with both polar and nonpolar interactions between chains serve as good host materials for amphipathic drugs.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department
of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, Wrocław 50-370, Poland
| | - Rafał Szukiewicz
- Faculty
of Physics, Institute of Experimental Physics, University of Wroclaw, Maxa Borna 9, Wroclaw 50-204, Poland
| |
Collapse
|
2
|
Yu L, Li Z, Hua C, Chen K, Guo X. Temperature Responsive Diblock Polymer Brushes as Nanoreactors for Silver Nanoparticles Catalysis. Polymers (Basel) 2023; 15:polym15081932. [PMID: 37112080 PMCID: PMC10146612 DOI: 10.3390/polym15081932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Metal nanoparticles are widely used in catalysis. Loading metal nanoparticles into polymer brushes has aroused wide attention, but regulation of catalytic performance still needs to be improved. The novel diblock polymer brushes, polystyrene@sodium polystyrene sulfonate-b-poly (N-isopropylacrylamide) (PSV@PSS-b-PNIPA) and PSV@PNIPA-b-PSS with reversed block sequence, were prepared by surface initiated photoiniferter-mediated polymerization (SI-PIMP) and used as nanoreactors to load silver nanoparticles (AgNPs). The block sequence caused the difference of conformation and further affected the catalytic performance. PSV@PNIPA-b-PSS@Ag was found to be able to control the amount of AgNPs exposed to external reactant of 4-nitrophenol at different temperatures to achieve regulation of the reaction rate due to the hydrogen bonds and further physical crosslinking between PNIPA and PSS.
Collapse
Affiliation(s)
- Liang Yu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ziwei Li
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Chen Hua
- Wuxi Biologics, Wuxi 214013, China
| | - Kaimin Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Ushakova AS, Vasilevskaya VV. Hedgehog, Chamomile and Multipetal Polymeric Structures on the Nanoparticle Surface: Theoretical Insights. Polymers (Basel) 2022; 14:polym14204358. [PMID: 36297936 PMCID: PMC9609382 DOI: 10.3390/polym14204358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
An analytical theory describing the variety of different morphological structures that spontaneously self-assemble in layers of amphiphilic homopolymers tightly grafted to spherical nanoparticle is proposed. For this purpose, the following structures were identified and outlined: hedgehogs, in which macromolecules are combined into cylindrical aggregates; chamomile, when cylindrical aggregates are connected by their ends into loops; multipetal structure with macromolecules self-assembling into thin lamellae; and unstructured, swollen and uniformly compacted shells. The results are presented in the form of state diagrams and serve as a basis for the directional design of the surface pattern by varying system parameters (particle radius, grafting density and degree of polymerization) and solvent properties (quality and selectivity).
Collapse
Affiliation(s)
- Aleksandra S. Ushakova
- A.N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St. 28, 119991 Moscow, Russia
| | - Valentina V. Vasilevskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds RAS, Vavilova St. 28, 119991 Moscow, Russia
- Chemistry Department, M. V. Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
- Correspondence:
| |
Collapse
|
4
|
Lamch Ł, Wilk KA, Dékány I, Deák Á, Hornok V, Janovák L. Rational Mitomycin Nanocarriers Based on Hydrophobically Functionalized Polyelectrolytes and Poly(lactide- co-glycolide). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:5404-5417. [PMID: 35442685 PMCID: PMC9097536 DOI: 10.1021/acs.langmuir.1c03360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Encapsulation of hydrophilic and amphiphilic drugs in appropriate colloidal carrier systems for sustained release is an emerging problem. In general, hydrophobic bioactive substances tend to accumulate in water-immiscible polymeric domains, and the release process is controlled by their low aqueous solubility and limited diffusion from the nanocarrier matrix. Conversely, hydrophilic/amphiphilic drugs are typically water-soluble and insoluble in numerous polymers. Therefore, a core-shell approach─nanocarriers comprising an internal core and external shell microenvironments of different properties─can be exploited for hydrophilic/amphiphilic drugs. To produce colloidally stable poly(lactic-co-glycolic) (PLGA) nanoparticles for mitomycin C (MMC) delivery and controlled release, a unique class of amphiphilic polymers─hydrophobically functionalized polyelectrolytes─were utilized as shell-forming materials, comprising both stabilization via electrostatic repulsive forces and anchoring to the core via hydrophobic interactions. Undoubtedly, the use of these polymeric building blocks for the core-shell approach contributes to the enhancement of the payload chemical stability and sustained release profiles. The studied nanoparticles were prepared via nanoprecipitation of the PLGA polymer and were dissolved in acetone as a good solvent and in an aqueous solution containing hydrophobically functionalized poly(4-styrenesulfonic-co-maleic acid) and poly(acrylic acid) of differing hydrophilic-lipophilic balance values. The type of the hydrophobically functionalized polyelectrolyte (HF-PE) was crucial for the chemical stability of the payload─derivatives of poly(acrylic acid) were found to cause very rapid degradation (hydrolysis) of MMC, in contrast to poly(4-styrenesulfonic-co-maleic acid). The present contribution allowed us to gain crucial information about novel colloidal nanocarrier systems for MMC delivery, especially in the fields of optimal HF-PE concentrations, appropriate core and shell building materials, and the colloidal and chemical stability of the system.
Collapse
Affiliation(s)
- Łukasz Lamch
- Department
of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, Wrocław 50-370, Poland
| | - Kazimiera A. Wilk
- Department
of Engineering and Technology of Chemical Processes, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, Wrocław 50-370, Poland
| | - Imre Dékány
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Ágota Deák
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - Viktória Hornok
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| | - László Janovák
- Department
of Physical Chemistry and Materials Science, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
5
|
Johnson L, Gray DM, Niezabitowska E, McDonald TO. Multi-stimuli-responsive aggregation of nanoparticles driven by the manipulation of colloidal stability. NANOSCALE 2021; 13:7879-7896. [PMID: 33881098 DOI: 10.1039/d1nr01190a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The capacity to control the dispersed or aggregated state of colloidal particles is particularly attractive for facilitating a diverse range of smart applications. For this reason, stimuli-responsive nanoparticles have garnered much attention in recent years. Colloidal systems that exhibit multi-stimuli-responsive behaviour are particularly interesting materials due to the greater spatial and temporal control they display in terms of dispersion/aggregation status; such behaviour can be exploited for implant formation, easy separation of a previously dispersed material or for the blocking of unwanted pores. This review will provide an overview of the recent publications regarding multi-stimuli-responsive microgels and hybrid core-shell nanoparticles. These polymer-based nanoparticles are highly sensitive to environmental conditions and can form aggregated clusters due to a loss of colloidal stability, triggered by temperature, pH and ionic strength stimuli. We aim to provide the reader with a discussion of the recent developments in this area, as well as an understanding of the fundamental concepts which underpin the responsive behaviour, and an exploration of their applications.
Collapse
Affiliation(s)
- Luke Johnson
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, UK.
| | - Dominic M Gray
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, UK.
| | - Edyta Niezabitowska
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, UK.
| | - Tom O McDonald
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, UK.
| |
Collapse
|
6
|
Wang Z, Chen K, Hua C, Guo X. Conformation Variation and Tunable Protein Adsorption through Combination of Poly(acrylic acid) and Antifouling Poly( N-(2-hydroxyethyl) acrylamide) Diblock on a Particle Surface. Polymers (Basel) 2020; 12:E566. [PMID: 32143509 PMCID: PMC7182850 DOI: 10.3390/polym12030566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
Adsorption and desorption of proteins on biomaterial surfaces play a critical role in numerous biomedical applications. Spherical diblock polymer brushes (polystyrene with photoiniferter (PSV) as the core) with different block sequence, poly(acrylic acid)-b-poly(N-(2-hydroxyethyl) acrylamide) (PSV@PAA-b-PHEAA) and poly(N-(2-hydroxyethyl) acrylamide)-b-poly(acrylic acid) (PSV@PHEAA-b-PAA) were prepared via surface-initiated photoiniferter-mediated polymerization (SI-PIMP) and confirmed by a series of characterizations including TEM, Fourier transform infrared (FTIR) and elemental analysis. Both diblock polymer brushes show typical pH-dependent properties measured by dynamic light scattering (DLS) and Zeta potential. It is interesting to find out that conformation of PSV@PAA-b-PHEAA uniquely change with pH values, which is due to cooperation of electrostatic repulsion and steric hindrance. High-resolution turbidimetric titration was applied to explore the behavior of bovine serum albumin (BSA) binding to diblock polymer brushes, and the protein adsorption could be tuned by the existence of PHEAA as well as apparent PAA density. These studies laid a theoretical foundation for design of diblock polymer brushes and a possible application in biomedical fields.
Collapse
Affiliation(s)
- Zun Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.W.); (C.H.)
| | - Kaimin Chen
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Chen Hua
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.W.); (C.H.)
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China; (Z.W.); (C.H.)
| |
Collapse
|