1
|
Li X, Lin Y, Zhao C, Meng N, Bai Y, Wang X, Yu J, Ding B. Biodegradable Polyurethane Derived from Hydroxylated Polylactide with Superior Mechanical Properties. Polymers (Basel) 2024; 16:1809. [PMID: 39000664 PMCID: PMC11243797 DOI: 10.3390/polym16131809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Developing biodegradable polyurethane (PU) materials as an alternative to non-degradable petroleum-based PU is a crucial and challenging task. This study utilized lactide as the starting material to synthesize polylactide polyols (PLA-OH). PLA-based polyurethanes (PLA-PUs) were successfully synthesized by introducing PLA-OH into the PU molecular chain. A higher content of PLA-OH in the soft segments resulted in a substantial improvement in the mechanical attributes of the PLA-PUs. This study found that the addition of PLA-OH content significantly improved the tensile stress of the PU from 5.35 MPa to 37.15 MPa and increased the maximum elongation to 820.8%. Additionally, the modulus and toughness of the resulting PLA-PU were also significantly improved with increasing PLA-OH content. Specifically, the PLA-PU with 40% PLA-OH exhibited a high modulus of 33.45 MPa and a toughness of 147.18 MJ m-3. PLA-PU films can be degraded to carbon dioxide and water after 6 months in the soil. This highlights the potential of synthesizing PLA-PU using biomass-renewable polylactide, which is important in green and sustainable chemistry.
Collapse
Affiliation(s)
- Xueqin Li
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yanyan Lin
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Cengceng Zhao
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Na Meng
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Ying Bai
- Textile Industry Science and Technology Development Center, Beijing 100020, China
| | - Xianfeng Wang
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Bin Ding
- Shanghai Frontier Science Research Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
2
|
Pierrard A, Melo SF, Thijssen Q, Van Vlierberghe S, Lancellotti P, Oury C, Detrembleur C, Jérôme C. Design of 3D-Photoprintable, Bio-, and Hemocompatible Nonisocyanate Polyurethane Elastomers for Biomedical Implants. Biomacromolecules 2024; 25:1810-1824. [PMID: 38360581 DOI: 10.1021/acs.biomac.3c01261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Polyurethanes (PUs) have adjustable mechanical properties, making them suitable for a wide range of applications, including in the biomedical field. Historically, these PUs have been synthesized from isocyanates, which are toxic compounds to handle. This has encouraged the search for safer and more environmentally friendly synthetic routes, leading today to the production of nonisocyanate polyurethanes (NIPUs). Among these NIPUs, polyhydroxyurethanes (PHUs) bear additional hydroxyl groups, which are particularly attractive for derivatizing and adjusting their physicochemical properties. In this paper, polyether-based NIPU elastomers with variable stiffness are designed by functionalizing the hydroxyl groups of a poly(propylene glycol)-PHU by a cyclic carbonate carrying a pendant unsaturation, enabling them to be post-photo-cross-linked with polythiols (thiol-ene). Elastomers with remarkable mechanical properties whose stiffness can be adjusted are obtained. Thanks to the unique viscous properties of these PHU derivatives and their short gel times observed by rheology experiments, formulations for light-based three-dimensional (3D) printing have been developed. Objects were 3D-printed by digital light processing with a resolution down to the micrometer scale, demonstrating their ability to target various designs of prime importance for personalized medicine. In vitro biocompatibility tests have confirmed the noncytotoxicity of these materials for human fibroblasts. In vitro hemocompatibility tests have revealed that they do not induce hemolytic effects, they do not increase platelet adhesion, nor activate coagulation, demonstrating their potential for future applications in the cardiovascular field.
Collapse
Affiliation(s)
- Anna Pierrard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, Building B6a, 4000 Liège, Belgium
| | - Sofia F Melo
- GIGA Cardiovascular Sciences - Laboratory of Cardiology, University of Liège, Avenue de l'Hôpital 11, Quartier Hôpital, Building B34, 4000 Liège, Belgium
- Faculty of Medicine, University of Liège, Avenue Hippocrate 15, Quartier Hôpital, 4000 Liège, Belgium
| | - Quinten Thijssen
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Patrizio Lancellotti
- GIGA Cardiovascular Sciences - Laboratory of Cardiology, University of Liège, Avenue de l'Hôpital 11, Quartier Hôpital, Building B34, 4000 Liège, Belgium
- Department of Cardiology - Centre Hospitalier Universitaire (CHU) of Liège, University of Liège Hospital, 4000 Liège, Belgium
| | - Cécile Oury
- GIGA Cardiovascular Sciences - Laboratory of Cardiology, University of Liège, Avenue de l'Hôpital 11, Quartier Hôpital, Building B34, 4000 Liège, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, Building B6a, 4000 Liège, Belgium
| | - Christine Jérôme
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liège, Allée du 6 août 13, Building B6a, 4000 Liège, Belgium
| |
Collapse
|
3
|
Mouren A, Avérous L. Sustainable cycloaliphatic polyurethanes: from synthesis to applications. Chem Soc Rev 2023; 52:277-317. [PMID: 36520183 DOI: 10.1039/d2cs00509c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polyurethanes (PUs) are a versatile and major polymer family, mainly produced via polyaddition between polyols and polyisocyanates. A large variety of fossil-based building blocks is commonly used to develop a wide range of macromolecular architectures with specific properties. Due to environmental concerns, legislation, rarefaction of some petrol fractions and price fluctuation, sustainable feedstocks are attracting significant attention, e.g., plastic waste and biobased resources from biomass. Consequently, various sustainable building blocks are available to develop new renewable macromolecular architectures such as aromatics, linear aliphatics and cycloaliphatics. Meanwhile, the relationship between the chemical structures of these building blocks and properties of the final PUs can be determined. For instance, aromatic building blocks are remarkable to endow materials with rigidity, hydrophobicity, fire resistance, chemical and thermal stability, whereas acyclic aliphatics endow them with oxidation and UV light resistance, flexibility and transparency. Cycloaliphatics are very interesting as they combine most of the advantages of linear aliphatic and aromatic compounds. This original and unique review presents a comprehensive overview of the synthesis of sustainable cycloaliphatic PUs using various renewable products such as biobased terpenes, carbohydrates, fatty acids and cholesterol and/or plastic waste. Herein, we summarize the chemical modification of the main sustainable cycloaliphatic feedstocks, synthesis of PUs using these building blocks and their corresponding properties and subsequently present their major applications in hot-topic fields, including building, transportation, packaging and biomedicine.
Collapse
Affiliation(s)
- Agathe Mouren
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 2, France.
| |
Collapse
|
4
|
Effects of preparation routes on the physical and rheological properties of isosorbide-based thermoplastic polyurethanes. Macromol Res 2023; 31:133-142. [PMID: 36844252 PMCID: PMC9942074 DOI: 10.1007/s13233-023-00125-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 02/23/2023]
Abstract
Biomass-derived isosorbide (ISB) is a promising alternative to petroleum-based monomers in industrial plastics. In this study, ISB-based thermoplastic polyurethanes (ISB-TPUs) were prepared using ISB as a biomass chain extender, and the effects of the preparation route on the structural and physical properties of the resultant polymers were investigated. Prepolymer methods were more suitable for obtaining the desired molecular weights (MWs) and physical properties of ISB-TPUs than the one-shot method. The presence of the solvent and catalyst in the prepolymer step had significant effects on the structural and physical properties of the resultant polymer. Among several prepolymer conditions, the solvent- and catalyst-free methods were the most suitable for preparing commercial-level ISB-TPUs, with number- and weight-average MWs (M n and M w ) of 32,881 and 90,929 g mol-1, respectively, and a tensile modulus (E) and ultimate tensile strength (UTS) of 12.0 and 40.2 MPa, respectively. In comparison, the presence of a catalyst in the prepolymer step resulted in lower MWs and mechanical properties (81,033 g mol-1 and 18.3 MPa of M w and UTS, respectively). The co-existence of the catalyst/solvent led to a further decline in the properties of ISB-TPUs (26,506 and 10.0 MPa of M w and UTS, respectively). ISB-TPU prepared via the solvent- and catalyst-free methods exhibited remarkable elastic recovery when subjected to up to 1000% strain in mechanical cycling tests. Rheological characterization confirmed the thermo-reversible phase change (thermoplasticity) of the polymer. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13233-023-00125-w.
Collapse
|
5
|
Lee J, Singh BK, Hafeez MA, Oh K, Um W. Comparative study of PMS oxidation with Fenton oxidation as an advanced oxidation process for Co-EDTA decomplexation. CHEMOSPHERE 2022; 300:134494. [PMID: 35390411 DOI: 10.1016/j.chemosphere.2022.134494] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
In nuclear industry, Co-EDTA complex is generated due to the decontamination activities of nuclear power plants (NPPs). This complex is extremely refractory to the convention methods and can escalate the mobility of Co radionuclide in the environment. Due to its hazardous impact on human and environment, the effective treatments of Co-EDTA complexes are highly recommended. In this study, for the first time, we applied both hydroxyl (OH) and sulfate radical (SO4-) based advanced oxidation processes (AOPs) namely Fenton and peroxymonosulfate (PMS) reactions for the Co-EDTA decomplexation. Both reactions exhibited higher Co-EDTA decomplexation at pH = 3, however, the PMS based reaction was found to be superior, which showed highest decomplexation efficiency (without pH adjustment) over Fenton reaction (pH = 1-13). Moreover, PMS based system was found to be more suitable than Fenton reaction, because PMS showed best Co-EDTA decomplexation efficiency without any additional catalyst dosages at the shorter reaction time. XRD data confirmed the presence of both CoO and Co(OH)2 in the precipitates after treatment. The electron spin resonance spectroscopy (ESR) analysis identified OH and SO4- in Fenton and PMS system, respectively. From this study, we believe that PMS based reaction is a superior alternative of Fenton reaction for the Co-EDTA decomplexation.
Collapse
Affiliation(s)
- Juhyeok Lee
- Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-GU, Pohang, 37673, Republic of Korea
| | - Bhupendra Kumar Singh
- Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-GU, Pohang, 37673, Republic of Korea; Nuclear Environmental Technology Institute (NETI), Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784, Republic of Korea
| | - Muhammad Aamir Hafeez
- Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-GU, Pohang, 37673, Republic of Korea
| | - Kyeongseok Oh
- Department of Chemical and Biological Engineering, Inha Technical College, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Wooyong Um
- Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-GU, Pohang, 37673, Republic of Korea; Division of Environmental Science and Engineering (DESE), Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-Gu, Pohang, 37673, Republic of Korea; Nuclear Environmental Technology Institute (NETI), Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 790-784, Republic of Korea.
| |
Collapse
|
6
|
Synthesis and property of polyurethane elastomer for biomedical applications based on nonaromatic isocyanates, polyesters, and ethylene glycol. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04667-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AbstractPolyurethane (PU) elastomers were synthesized by the reaction of HDI or IPDI diisocyanates and poly(ε-caprolactone) (PCL or poly(ethylene adipate) (PA) diols and ethylene glycol as a polymer chain extender. IR, 1H, and 13C NMR spectroscopy and X-ray analysis were used for the structural analysis of the formed films. The molecular weight distribution was examined by GPC chromatography. Based on the measured contact angles, free surface energy parameters were calculated. The obtained results were analyzed for the possible use of these polyurethanes as biomaterials. The most promising in this respect was PU-3, which was synthesized from IPDI and PCL. This was due to its high molecular weight of approximately 90,000, the presence of a crystalline phase, and the relatively high hydrophobicity, with a SEP value below 25 mJ/m2. These films showed a good resistance to hydrolysis during incubation in Baxter physiological saline during 6 weeks. Both Gram-positive (Bacillus sp.) and Gram-negative (Pseudomonas sp.) types of bacterial strains were used to test the biodegradation property. Synthesized PUs are biodegradable and showed moderate or even mild cytotoxicity against human normal fibroblasts (BJ) and immortalized keratinocytes (HaCaT), estimated with direct contact assay. The most biocompatible was PU-3 film, which revealed rather mild reactivity against both cell lines, and the least was PU-2 film, synthesized from HDI and PA (severe toxicity for HaCaTs).
Collapse
|
7
|
Kéki S. Functional Polyurethanes-In Memory of Prof. József Karger-Kocsis. Polymers (Basel) 2020; 12:polym12020434. [PMID: 32069776 PMCID: PMC7077621 DOI: 10.3390/polym12020434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 11/16/2022] Open
Affiliation(s)
- Sándor Kéki
- Department of Applied Chemistry, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Egyetem tér 1., Hungary
| |
Collapse
|
8
|
Zhang M, Tu Y, Zhou Z, Wu G. Balancing the transesterification reactivity of isosorbide with diphenyl carbonate: preferential activation of exo-OH. Polym Chem 2020. [DOI: 10.1039/d0py00764a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Exo-OH on ISB has long been asserted as a highly reactive moiety compared with endo-OH. Herein, we report that the nucleophilic attack surmounts steric hindrance in rendering endo-OH more reactive than exo-OH in case of transesterification with DPC.
Collapse
Affiliation(s)
- Ming Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science & Engineering
- East China University of Science & Technology
- Shanghai 200237
- China
| | - Yifei Tu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science & Engineering
- East China University of Science & Technology
- Shanghai 200237
- China
| | - Zibo Zhou
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science & Engineering
- East China University of Science & Technology
- Shanghai 200237
- China
| | - Guozhang Wu
- Shanghai Key Laboratory of Advanced Polymeric Materials
- School of Materials Science & Engineering
- East China University of Science & Technology
- Shanghai 200237
- China
| |
Collapse
|