1
|
Sun Y, Liu Q, Wang Z, Zhang J. Novel strategy for multi-critical quality attributes analysis of pharmaceutical excipient polyethylene glycol by UHPLC-Q-TOF/MS. J Chromatogr A 2025; 1742:465661. [PMID: 39793451 DOI: 10.1016/j.chroma.2025.465661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/05/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Polyethylene glycol (PEG) is one kind of polymeric pharmaceutical excipient widely used in pharmaceutics. The critical quality attributes (CQAs) are essential to their physicochemical properties and functions. However, there is no effective strategy to rapidly and simply analyze PEG multi-CQAs. Herein, a novel strategy was developed to simultaneously evaluate four PEG CQAs including average degree of polymerization, average molecular weight, weight-average molecular weight and polydispersity based on comprehensive identification and mathematical models of PEG components. In this strategy, an ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) method was established and different types and concentrations of mobile phase additives were optimized to overcome the mass discrimination effect of PEG components. MS data was deconvoluted by molecular feature extraction to identify PEG components with multi-charged quasimolecular ions. A total of 168 PEG components were identified in PEG mixture samples. Mathematical models were established based on the logarithmic relation between the degree of polymerization and retention time and a theoretical database including 220 detected and predicted PEG components was constructed to rapidly recognize and identify PEG components in PEG excipients and preparations samples. The calculation formulae for multi-CQAs using UHPLC-Q-TOF/MS analysis results were created, then the strategy workflow to evaluate multi-CQAs was established and validated by PEG standards, showing high efficiency for quality control of PEG excipients and their preparations.
Collapse
Affiliation(s)
- Yutong Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jinlan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
2
|
Engel N, Dirauf M, Czaplewska JA, Nischang I, Gottschaldt M, Schubert US. Determination of ω-end functionalities in tailored poly(2-alkyl-2-oxazoline)s by liquid chromatography and mass spectrometry. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231008. [PMID: 38328565 PMCID: PMC10846952 DOI: 10.1098/rsos.231008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/23/2023] [Indexed: 02/09/2024]
Abstract
The in-depth analytical characterization of polymers, in particular regarding intended biomedical applications, is becoming increasingly important to elucidate their structure-property relationships. Specifically, end group analysis of e.g. polymers featuring a 'stealth effect' towards the immune system is of particular importance because of their use in coupling reactions to bioactive compounds. Herein, we established a liquid chromatography (LC) protocol to analyse bicyclo[6.1.0]nonyne-functionalized poly(2-alkyl-2-oxazoline)s (POx)s as promising functional polymers that can be applied in strain-promoted click reactions. This work involved the synthesis of poly(2-methyl-2-oxazoline) (PMeOx) and poly(2-ethyl-2-oxazoline) (PEtOx) by living cationic ring-opening polymerization (CROP) with different molar masses ranging from 2 up to 17.5 kDa and, to our knowledge, the first liquid chromatographic analysis of PMeOx. The developed analytical protocol enables the quantitative determination of post-polymerization reaction sequences with respect to the conversion of the ω-end groups. All synthesized polymers were straightforwardly analysed on a C18-derivatized silica monolithic column under reversed-phase chromatographic conditions with a binary mobile phase gradient comprising a mixture of acetonitrile and water. Subsequent mass spectrometry of collected elution fractions enabled the confirmation of the desired ω-end group functionalities and the identification of synthetic by-products.
Collapse
Affiliation(s)
- Nora Engel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Michael Dirauf
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
- NGP Polymers GmbH, Philosophenweg 7a, 07743 Jena
| | - Justyna A. Czaplewska
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ivo Nischang
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstraße 12–14, 07743 Jena, Germany
| | - Michael Gottschaldt
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
3
|
Parcheta M, Sobiesiak M. Preparation and Functionalization of Polymers with Antibacterial Properties-Review of the Recent Developments. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4411. [PMID: 37374596 PMCID: PMC10304131 DOI: 10.3390/ma16124411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
The presence of antibiotic-resistant bacteria in our environment is a matter of growing concern. Consumption of contaminated drinking water or contaminated fruit or vegetables can provoke ailments and even diseases, mainly in the digestive system. In this work, we present the latest data on the ability to remove bacteria from potable water and wastewater. The article discusses the mechanisms of the antibacterial activity of polymers, consisting of the electrostatic interaction between bacterial cells and the surface of natural and synthetic polymers functionalized with metal cations (polydopamine modified with silver nanoparticles, starch modified with quaternary ammonium or halogenated benzene). The synergistic effect of polymers (N-alkylaminated chitosan, silver doped polyoxometalate, modified poly(aspartic acid)) with antibiotics has also been described, allowing for precise targeting of drugs to infected cells as a preventive measure against the excessive spread of antibiotics, leading to drug resistance among bacteria. Cationic polymers, polymers obtained from essential oils (EOs), or natural polymers modified with organic acids are promising materials in the removal of harmful bacteria. Antimicrobial polymers are successfully used as biocides due to their acceptable toxicity, low production costs, chemical stability, and high adsorption capacity thanks to multi-point attachment to microorganisms. New achievements in the field of polymer surface modification in order to impart antimicrobial properties were summarized.
Collapse
Affiliation(s)
- Monika Parcheta
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Skłodowskiej sq 3., 20 031 Lublin, Poland
| | - Magdalena Sobiesiak
- Department of Polymer Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, Maria Curie-Skłodowskiej sq 3., 20 031 Lublin, Poland
| |
Collapse
|
4
|
Kheiri S, Kiani M, Tashi H, Shahbazi M, Amini H. Analytical chromatography approaches during the synthesis and conjugation of methoxypolyethylene glycol-succinimidyl butanoate (mPEG-SBA) to epoetin beta. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1221:123679. [PMID: 36966608 DOI: 10.1016/j.jchromb.2023.123679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
Conjugation of epoetin beta (EPO) with methoxypolyethylene glycol-succinimidyl butanoate (mPEG-SBA) was studied. The compound mPEG-SBA was synthesized from mPEG, and the obtained intermediates and final product were analyzed by a reversed-phase chromatographic system equipped with an evaporative light scattering detector. Labeling the hydroxyl group in PEGs with benzoyl chloride and succinimide with benzylamine was applied to resolve and characterize different PEGs. The synthesized mPEG-SBA was used for the PEGylation of EPO. A size-exclusion chromatographic method monitored the reaction, simultaneously determining the PEGylated and unreacted EPO and protein aggregates. A borate buffer (0.1 M, pH 7.8) and PEG/protein molar ratio of 3:1 produced a maximum amount of monoPEGylated EPO with the minimum amount of polyPEGylated EPO variants. Although EPO is considered a stable glycoprotein hormone that remains monomeric when refrigerated, PEGylation of EPO with mPEG-SBA resulted in the significant formation of EPO dimer. The formation of EPO dimer and polyPEGylated EPO was pH-dependent, showing higher amounts of aggregates and lower amounts of polyPEGylated forms in lower pH values. Accordingly, aggregated EPO should be considered a major PEGylation-related impurity. In conclusion, the present study highlighted the importance of having suitable analytical approaches in controlling mPEG-SBA synthesis and conjugation to EPO.
Collapse
Affiliation(s)
- Semira Kheiri
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Kiani
- AryaTinaGene Biopharmaceutical Company, Gorgan, Iran
| | - Hossein Tashi
- AryaTinaGene Biopharmaceutical Company, Gorgan, Iran
| | - Majid Shahbazi
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran; AryaTinaGene Biopharmaceutical Company, Gorgan, Iran
| | - Hossein Amini
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran; AryaTinaGene Biopharmaceutical Company, Gorgan, Iran.
| |
Collapse
|
5
|
Tsarenko E, Schubert US, Nischang I. Nanoparticle Formulation Composition Analysis by Liquid Chromatography on Reversed-Phase Monolithic Silica. Anal Chem 2022; 95:565-569. [PMID: 36548201 PMCID: PMC9850345 DOI: 10.1021/acs.analchem.2c04277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Multifunctional nanoparticle (NP) formulations for medical purposes have already found their way toward envisaged translation. A persistent challenge of those systems is, next to NP size analysis, the compositional analysis of the NPs with the polymer as the matrix component and the encapsulated drug, particularly in a quantitative manner. Herein, we report the formulation of poly(lactic-co-glycolic acid) (PLGA) NPs by nanoprecipitation and the analysis of their integrity and size by dynamic light scattering (DLS) and scanning electron microscopy (SEM). Those NPs feature a variety of encapsulated drugs including the well-known ibuprofen (Ibu) as well as dexamethasone (Dex) and dexamethasone acetate (DexAce), with the latter being of potential interest for clinical treatment of SARS-CoV-2 patients. All those dissolved formulation compositions have been subjected to liquid chromatography on reversed-phase silica monolithic columns, allowing to quantitatively assess amounts of small molecule drug and NP constituting PLGA polymer in a single run. The chromatographically resolved hydrophobicity differences of the drugs correlated with their formulation loading and were clearly separated from the PLGA matrix polymer with high resolution. Our study identifies the viability of reversed-phase monolithic silica in the chromatography of both small drug molecules and particularly pharmapolymers in a repeatable and simultaneous fashion, and can provide a valuable strategy for analysis of diverse precursor polymer systems and drug components in multifunctional drug formulations.
Collapse
Affiliation(s)
- Ekaterina Tsarenko
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany,Jena
Center for Soft Matter, Friedrich Schiller
University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany,Jena
Center for Soft Matter, Friedrich Schiller
University Jena, Philosophenweg 7, 07743 Jena, Germany,
| | - Ivo Nischang
- Laboratory
of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany,Jena
Center for Soft Matter, Friedrich Schiller
University Jena, Philosophenweg 7, 07743 Jena, Germany,Phone: +49-3641-948-569.
| |
Collapse
|
6
|
Clarke BR, Tew GN. Synthesis and characterization of poly(ethylene glycol) bottlebrush networks via ring-opening metathesis polymerization. JOURNAL OF POLYMER SCIENCE 2022; 60:1501-1510. [PMID: 35967758 PMCID: PMC9373913 DOI: 10.1002/pol.20210865] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022]
Abstract
Herein it is reported how the overlap concentration (C*) can be used to overcome crosslinking due to diol impurities in commercial PEG, allowing for the synthesize of bottlebrush polymers with good control over molecular weight. Additionally, PEG-based bottlebrush networks are synthesized via ROMP, attaining high conversions with minimal sol fractions (<2%). The crystallinity and mechanical properties of these networks are then further altered by solvent swelling with phosphate buffer solution (PBS) and 1-ethyl-3-methylimidazolium ethyl sulfate/DCM cosolvents. The syntheses reported here highlight the potential of the bottlebrush network architecture for use in the rational design of new materials.
Collapse
Affiliation(s)
- Brandon R Clarke
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts, 01003, United States
| |
Collapse
|
7
|
Brunzel M, Dirauf M, Sahn M, Czaplewska JA, Fritz N, Weber C, Nischang I, Schubert US. On the identification and quantification of proton-initiated species in the synthesis of poly(2-alkyl-2-oxazoline)s by high resolution liquid chromatography. J Chromatogr A 2021; 1653:462364. [PMID: 34280792 DOI: 10.1016/j.chroma.2021.462364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 12/01/2022]
Abstract
Hydrophilic poly(2-oxazoline)s represent a promising alternative to replace poly(ethylene glycol) in the biomedical field. For that purpose, reliable analytical protocols to confirm identity and quantity of impurities are required. In particular, side products deriving from chain transfer reactions occurring during the cationic ring-opening polymerization and incomplete end-capping processes may be present. The analytical approach must hence be capable of separating polymers according to minor changes regarding their end group. We demonstrate that liquid chromatography, relying on a monolithic C18-modified silica column and isocratic as well as gradient elution using water / acetonitrile mixtures and varying detectors, can accomplish such demanding high resolution separations. Poly(2-ethyl-2-oxazoline)s (PEtOx) with acetyl, hydroxyl, and phthalimide ω-end groups were investigated. Identification of side products was achieved through coupling with electrospray ionization mass spectrometry. UV / Vis detection was applied to quantify chain transfer products in PEtOx comprising biphenyl moieties. In addition, gradient elution enabled the separation of PEtOx into macromolecules according to their specific degrees of polymerization in molar mass ranges around 2,000 g mol-1.
Collapse
Affiliation(s)
- Michaela Brunzel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Michael Dirauf
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Martin Sahn
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Justyna A Czaplewska
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Nicole Fritz
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
8
|
Katakam LNR, Ettaboina SK, Marisetti VM. Development and validation of LC-MS method for the determination of heptaethylene glycol monomethyl ether in benzonatate bulk drugs. Biomed Chromatogr 2021; 35:e5096. [PMID: 33605444 DOI: 10.1002/bmc.5096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 11/05/2022]
Abstract
A simple and isocratic reverse-phase liquid chromatography with mass spectrometric method has been developed and validated for the determination of heptaethylene glycol monomethyl ether in benzonatate drug substance. Benzonatate is an oral antitussive drug used to relieve and suppress cough in patients older than 10 years. The presence of residual heptaethylene glycol monomethyl ether in the benzonatate drug substance affects the safety, strength, purity and quality of the drug substance. The subject compound separation was achieved using 0.1% formic acid and acetonitrile (50:50 v/v) at a flow rate of 0.3 ml/min. The Suplex PKB-100 250 × 4.6 mm, 5 μm LC column was used for a better peak shape. Detection was carried out at an m/z value of 341. The linearity curve showed a correlation of coefficient of >0.999. The precision and intermediate precision (RSD) were <7.30. The accuracy values were >90% for all levels. The developed method was validated as per International Conference on Harmonization guidelines and found to be a novel, specific and sensitive analytical method for determination of components of interest.
Collapse
|
9
|
Well-defined poly(ethylene glycol) polymers as non-conventional reactive tracers of colloidal transport in porous media. J Colloid Interface Sci 2020; 584:592-601. [PMID: 33157492 DOI: 10.1016/j.jcis.2020.09.056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/23/2022]
Abstract
HYPOTHESIS A prominent fraction of mobile organic matter in natural aqueous soil solutions is formed by molecules in sizes that seamlessly exceed the lower end of what is defined as a colloid. The hydrodynamics and the functional diversity of these molecules result in a transport behavior that is fundamentally different from smaller compounds. However, there is a lack of "reactive tracers" that allow for the study of colloidal transport phenomena appropriately. We hypothesize that tailor-made and well-defined synthetic polymers can overcome this limitation. EXPERIMENTS We prepared and characterized the hydrodynamic properties of water-soluble poly(ethylene glycol)s (PEG) and studied their adsorption to mixtures of quartz, illite, and goethite in batch and column experiments. FINDINGS We used this information to independently predict the transport of PEG with striking agreement to the observed mean breakthrough times in all porous media. As PEG transport can be comprehensively and quantitatively reconstructed, we conclude that functionalized PEGs are promising candidates to be used as tailorable and non-toxic tracers available in the size range of natural organic (macro-)molecules.
Collapse
|
10
|
Schmidt BVKJ. Hydrophilic Polymers. Polymers (Basel) 2019; 11:polym11040693. [PMID: 30995756 PMCID: PMC6523788 DOI: 10.3390/polym11040693] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 04/15/2019] [Indexed: 12/30/2022] Open
Affiliation(s)
- Bernhard V K J Schmidt
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
- School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|