1
|
Cong M, Wu K, Wang J, Li Z, Mao R, Niu Y, Chen H. Synthesis of Aminomethylpyridine-Decorated Polyamidoamine Dendrimer/Apple Residue for the Efficient Capture of Cd(II). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2320-2332. [PMID: 38236574 DOI: 10.1021/acs.langmuir.3c03447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Water contamination irritated by Cd(II) brings about severe damage to the ecosystem and to human health. The decontamination of Cd(II) by the adsorption method is a promising technology. Here, we construct aminomethylpyridine-functionalized polyamidoamine (PAMAM) dendrimer/apple residue biosorbents (AP-G1.0-AMP and AP-G2.0-AMP) for adsorbing Cd(II) from aqueous solution. The adsorption behaviors of the biosorbents for Cd(II) were comprehensively evaluated. The maximum adsorption capacities of AP-G1.0-AMP and AP-G2.0-AMP for Cd(II) are 1.40 and 1.44 mmol·g-1 at pH 6. The adsorption process for Cd(II) is swift and can reach equilibrium after 120 min. The film diffusion process dominates the adsorption kinetics, and a pseudo-second-order model is appropriate to depict this process. The uptake of Cd(II) can be promoted by increasing concentration and temperature. The adsorption isotherm follows the Langmuir model with a chemisorption mechanism. The biosorbents also display satisfied adsorption for Cd(II) in real aqueous media. The adsorption mechanism indicates that C-N, N═C, C-O, CONH, N-H, and O-H groups participate in the adsorption for Cd(II). The biosorbents display a good regeneration property and can be reused with practical value. The as-prepared biosorbents show great potential for removing Cd(II) from water solutions with remarkable significance.
Collapse
Affiliation(s)
- Mengchen Cong
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Kaiyan Wu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, P. R. China
| | - Jiaxuan Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Ziwei Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Ruiyu Mao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Hou Chen
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| |
Collapse
|
2
|
Yasir AT, Benamor A, Hawari AH, Mahmoudi E. Poly (amido amine) dendrimer based membranes for wastewater treatment – A critical review. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Emenike EC, Iwuozor KO, Anidiobi SU. Heavy Metal Pollution in Aquaculture: Sources, Impacts and Mitigation Techniques. Biol Trace Elem Res 2022; 200:4476-4492. [PMID: 34813030 DOI: 10.1007/s12011-021-03037-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/15/2021] [Indexed: 01/28/2023]
Abstract
Aquaculture is one of the fastest growing agro-industries as it presently accounts for nearly 50% of all fish for direct human consumption and 43% of total seafood supply. Fish provide about 20% average daily intake of animal protein for about 3.2 billion people globally. The treatment of aquaculture in recent years for the mitigation of heavy metals and other contaminants has been gaining traction due to the benefits of aquaculture to both man and the environment. This paper provides a review of the sources, impacts, and the various methods that have been deployed in recent years by various researchers for the treatment of heavy metal contaminated aquaculture. Related works of literature were obtained and compiled from academic search databases and were carefully analysed in this study. The dangers these metals pose to the sustainability of aquaculture were studied in this review. Studies indicate that some heavy metals, such as mercury, lead, and cadmium, due to their long-term persistence in the environment, allow them to accumulate in the food chain. Mitigation techniques such as adsorption, bio-sorption, and phytoremediation have been deployed for the treatment of heavy metal contaminated aquaculture. Some research gaps were also highlighted which could form the basis for future research, such as research centred on the effects of these metals on the embryonic development of aquaculture organisms and the alterations the metals caused in their stages of development.
Collapse
Affiliation(s)
- Ebuka Chizitere Emenike
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria.
| | - Kingsley O Iwuozor
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria.
| | - Stella Ukamaka Anidiobi
- Department of Chemistry, University of Lagos, P. M. B. 1029, Lagos, Nigeria
- Federal College of Fisheries and Marine Technology, Lagos, Nigeria
| |
Collapse
|
4
|
Guo D, Huang S, Zhu Y. The Adsorption of Heavy Metal Ions by Poly (Amidoamine) Dendrimer-Functionalized Nanomaterials: A Review. NANOMATERIALS 2022; 12:nano12111831. [PMID: 35683687 PMCID: PMC9182522 DOI: 10.3390/nano12111831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023]
Abstract
Rapid industrialization has resulted in serious heavy metal pollution. The removal of heavy metal ions from solutions is very important for environmental safety and human health. Poly (amidoamine) (PAMAM) dendrimers are artificial macromolecular materials with unique physical and chemical properties. Abundant amide bonds and amino functional groups provide them with a high affinity for heavy metal ions. Herein, PAMAM-functionalized adsorbents are reviewed in terms of different nanomaterial substrates. Approaches in which PAMAM is grafted onto the surfaces of substrates are described in detail. The adsorption isotherms and kinetics of these adsorbents are also discussed. The effects of PAMAM generation, pH, adsorbent dosage, adsorption time, thermodynamics, and ionic strength on adsorption performance are summarized. Adsorption mechanisms and the further functionalization of PAMAM-grafted adsorbents are reviewed. In addition to the positive results, existing problems are also put forward in order to provide a reference for the optimization of PAMAM-grafted adsorbents of heavy metal ions.
Collapse
Affiliation(s)
- Dandan Guo
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China;
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
- Qian Xuesen Collaborative Research Center for Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| | - Shaohua Huang
- Institute of Drug Discovery and Technology, Ningbo University, Ningbo 315211, China;
- Qian Xuesen Collaborative Research Center for Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
- Correspondence: (S.H.); (Y.Z.)
| | - Yan Zhu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, China
- Correspondence: (S.H.); (Y.Z.)
| |
Collapse
|
5
|
Wang Q, Zhu S, Xi C, Zhang F. A Review: Adsorption and Removal of Heavy Metals Based on Polyamide-amines Composites. Front Chem 2022; 10:814643. [PMID: 35308790 PMCID: PMC8931339 DOI: 10.3389/fchem.2022.814643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/17/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, the problem of heavy metal pollution has become increasingly prominent, so it is urgent to develop new heavy metal adsorption materials. Compared with many adsorbents, the polyamide-amine dendrimers (PAMAMs) have attracted extensive attention of researchers due to its advantages of macro-molecular cavity, abundant surface functional groups, non-toxicity, high efficiency and easy modification. But in fact, it is not very suitable as an adsorbent because of its solubility and difficulty in separation, which also limits its application in environmental remediation. Therefore, in order to make up for the shortcomings of this material to a certain extent, the synthesis and development of polymer composite materials based on PAMAMs are increasingly prominent in the direction of solving heavy metal pollution. In this paper, the application of composites based on PAMAMs and inorganic or organic components in the adsorption of heavy metal ions is reviewed. Finally, the prospects and challenges of PAMAMs composites for removal of heavy metal ions in water environment are discussed.
Collapse
|
6
|
Ruiz I, Corona-García C, Santiago AA, Abatal M, Téllez Arias MG, Alfonso I, Vargas J. Synthesis, characterization, and assessment of novel sulfonated polynorbornene dicarboximides as adsorbents for the removal of heavy metals from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52014-52031. [PMID: 33997932 DOI: 10.1007/s11356-021-13757-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The occurrence of heavy metals in the natural aquatic systems arising from anthropogenic sources is an issue of global and environmental concern because of their extremely harmful effects to living beings even in rather low concentrations. The synthesis and ring-opening metathesis polymerization (ROMP) of novel norbornene dicarboximides bearing highly aromatic pendant groups, specifically, N-4-tritylphenyl-norbornene-5,6-dicarboximide (2a) and N-2,4,6-(triphenyl)phenyl-norbornene-5,6-dicarboximide (2b), their hydrogenation and further polymer sulfonation to render them adsorbents for the uptake of heavy metal ions from water is reported in this study. The macromolecules were characterized by means of FT-IR, 1H NMR, and thermal analysis, among others. A thoroughly kinetic and isothermal study of adsorption in single and ternary aqueous solutions of Pb2+, Cd2+, and Ni2+ was performed considering several experimental variables for instance initial metal concentration, contact time and solution pH. In general, the experimental data were adjusted more efficiently to the pseudo-second order kinetic model and to the Freundlich isotherm model, respectively. The maximum removal amounts were found to be 55.7 mg/g for Pb2+, 33.9 mg/g for Cd2+, and 10.2 mg/g for Ni2+ in the sulfonated trityl-bearing polymer 5a while those found for the sulfonated triphenyl-bearing polymer 5b were 31.5 mg/g for Pb2+, 26.6 mg/g for Cd2+, and 7.0 mg/g for Ni2+, respectively. The higher heavy metal removal capacity of polymer 5a was attributed to its also higher degree of sulfonation. The outcomes indicate that these novel sulfonic acid containing polymer-based adsorbents are effective for the uptake of heavy metallic elements from water.
Collapse
Affiliation(s)
- Isabel Ruiz
- Instituto de Investigaciones en Materiales, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex Hacienda de San José de la Huerta, C.P. 58190, Morelia, Michoacán, México
| | - Carlos Corona-García
- Instituto de Investigaciones en Materiales, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex Hacienda de San José de la Huerta, C.P. 58190, Morelia, Michoacán, México
| | - Arlette A Santiago
- Escuela Nacional de Estudios Superiores, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex Hacienda de San José de la Huerta, C.P. 58190, Morelia, Michoacán, México
| | - Mohamed Abatal
- Facultad de Ingeniería, Universidad Autónoma del Carmen, Avenida Central S/N Esq. con Fracc. Mundo Maya, C.P. 24115, Ciudad del Carmen, Campeche, México
| | - Mercedes Gabriela Téllez Arias
- Facultad de Ingeniería Química, Edif. M-CU, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, C. P. 58060, México
| | - Ismeli Alfonso
- Instituto de Investigaciones en Materiales, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex Hacienda de San José de la Huerta, C.P. 58190, Morelia, Michoacán, México
| | - Joel Vargas
- Instituto de Investigaciones en Materiales, Unidad Morelia, Universidad Nacional Autónoma de México, Antigua Carretera a Pátzcuaro No. 8701, Col. Ex Hacienda de San José de la Huerta, C.P. 58190, Morelia, Michoacán, México.
| |
Collapse
|
7
|
Choi H, Kim T, Kim SY. Poly (Amidehydrazide) Hydrogel Particles for Removal of Cu 2+ and Cd 2+ Ions from Water. Gels 2021; 7:121. [PMID: 34449598 PMCID: PMC8395747 DOI: 10.3390/gels7030121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/04/2022] Open
Abstract
Poly(amidoamine)s (PAMAM) are very effective in the removal of heavy metal ions from water due to their abundant amine and amide functional groups, which have a high binding ability to heavy metal ions. We synthesized a new class of hyperbranched poly(amidehydrazide) (PAMH) hydrogel particles from dihydrazides and N,N'-methylenebisacrylamide (MBA) monomer by using the A2 + B4 polycondensation reaction in an inverse suspension polymerization process. In Cd2+ and Cu2+ ion sorption tests, the synthesized dihydrazide-based PAMH hydrogel particles exhibited sorption capacities of 85 mg/g for copper and 47 mg/g for cadmium. Interestingly, the PAMH showed only a 10% decrease in sorption ability in an acidic condition (pH = 4) compared to the diamine-based hyperbranched PAMAM, which showed a ~90% decrease in sorption ability at pH of 4. In addition, PAMH hydrogel particles remove trace amounts of copper (0.67 ppm) and cadmium (0.5 ppm) in water, below the detection limit.
Collapse
Affiliation(s)
| | | | - Sang Youl Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (H.C.); (T.K.)
| |
Collapse
|
8
|
Jiang L, Yun J, Wang Y, Yang H, Xu Z, Xu ZL. High-flux, anti-fouling dendrimer grafted PAN membrane: Fabrication, performance and mechanisms. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117743] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Pakdel Mojdehi A, Pourafshari Chenar M, Namvar-Mahboub M, Eftekhari M. Development of PES/polyaniline-modified TiO2 adsorptive membrane for copper removal. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123931] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|