1
|
Pluta M, Bojda J, Svyntkivska M, Makowski T, de Boer EL, Piorkowska E. Crystallization-Controlled Structure and Thermal Properties of Biobased Poly(Ethylene2,5-Furandicarboxylate). Polymers (Basel) 2024; 16:3052. [PMID: 39518261 PMCID: PMC11548705 DOI: 10.3390/polym16213052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Crystallization-controlled structure and thermal properties of biobased poly(ethylene 2,5-furandicarboxylate) (PEF) were studied. The cold-crystallization temperature controlled the structure and thermal properties of the biobased PEF. The melting was complex and evidenced the presence of a significant fraction of less-stable crystals with a low melting temperature that linearly increased with Tc, which formed already during the early stages of crystallization, together with those melting at a higher temperature. Low Tc resulted in the α'-phase formation, less crystallinity, and greater content of the rigid amorphous phase. At high Tc, the α-phase formed, higher crystallinity developed, the rigid amorphous phase content was lower, and the melting temperature of the less-stable crystals was higher; however, slight polymer degradation could have occurred. The applied thermal treatment altered the thermal behavior of PEF by shifting the melting of the less stable crystals to a significantly higher temperature. SEM examination revealed a spherulitic morphology. A lamellar order was evidenced with an average long period and small average lamella thickness, the latter about 3-3.5 nm, only slightly increasing with Tc.
Collapse
Affiliation(s)
- Miroslaw Pluta
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (J.B.); (M.S.); (E.P.)
| | - Joanna Bojda
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (J.B.); (M.S.); (E.P.)
| | - Mariia Svyntkivska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (J.B.); (M.S.); (E.P.)
| | - Tomasz Makowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (J.B.); (M.S.); (E.P.)
| | - Ele L. de Boer
- Avantium Renewable Polymers BV, Zekeringstraat 29, 1014 BV Amsterdam, The Netherlands;
| | - Ewa Piorkowska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (J.B.); (M.S.); (E.P.)
| |
Collapse
|
2
|
Niedźwiedź MJ, Ignaczak W, Sobolewski P, Goszczyńska A, Demirci G, El Fray M. Injectable and photocurable macromonomers synthesized using a heterometallic magnesium-titanium metal-organic catalyst for elastomeric polymer networks. RSC Adv 2023; 13:18371-18381. [PMID: 37342811 PMCID: PMC10277904 DOI: 10.1039/d3ra02157b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/30/2023] [Indexed: 06/23/2023] Open
Abstract
Injectable and in situ photocurable biomaterials are receiving a lot of attention due to their ease of application via syringe or dedicated applicator and ability to be used in laparoscopic and robotic minimally invasive procedures. The aim of this work was to synthesize photocurable ester-urethane macromonomers using a heterometallic magnesium-titanium catalyst, magnesium-titanium(iv) butoxide for elastomeric polymer networks. The progress of the two-step synthesis of macromonomers was monitored using infrared spectroscopy. The chemical structure and molecular weight of the obtained macromonomers were characterized using nuclear magnetic resonance spectroscopy and gel permeation chromatography. The dynamic viscosity of the obtained macromonomers was evaluated by a rheometer. Next, the photocuring process was studied under both air and argon atmospheres. Both the thermal and dynamic mechanical thermal properties of the photocured soft and elastomeric networks were investigated. Finally, in vitro cytotoxicity screening of polymer networks based on ISO10993-5 revealed high cell viability (over 77%) regardless of curing atmosphere. Overall, our results indicate that this heterometallic magnesium-titanium butoxide catalyst can be an attractive alternative to commonly used homometallic catalysts for the synthesis of injectable and photocurable materials for medical applications.
Collapse
Affiliation(s)
- Malwina J Niedźwiedź
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin Al. Piastów 45 70-311 Szczecin Poland
| | - Wojciech Ignaczak
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin Al. Piastów 45 70-311 Szczecin Poland
| | - Peter Sobolewski
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin Al. Piastów 45 70-311 Szczecin Poland
| | - Agata Goszczyńska
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin Al. Piastów 45 70-311 Szczecin Poland
| | - Gokhan Demirci
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin Al. Piastów 45 70-311 Szczecin Poland
| | - Miroslawa El Fray
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology in Szczecin Al. Piastów 45 70-311 Szczecin Poland
| |
Collapse
|
3
|
Zaidi S, Bougarech A, Abid M, Abid S, Silvestre AJD, Sousa AF. Highly Flexible Poly(1,12-dodecylene 5,5'-isopropylidene-bis(ethyl 2-furoate)): A Promising Biobased Polyester Derived from a Renewable Cost-Effective Bisfuranic Precursor and a Long-Chain Aliphatic Spacer. Molecules 2023; 28:molecules28104124. [PMID: 37241868 DOI: 10.3390/molecules28104124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The continuous search for novel biobased polymers with high-performance properties has highlighted the role of monofuranic-based polyesters as some of the most promising for future plastic industry but has neglected the huge potential for the polymers' innovation, relatively low cost, and synthesis easiness of 5,5'-isopropylidene bis-(ethyl 2-furoate) (DEbF), obtained from the platform chemical, worldwide-produced furfural. In this vein, poly(1,12-dodecylene 5,5'-isopropylidene -bis(ethyl 2-furoate)) (PDDbF) was introduced, for the first time, as a biobased bisfuranic long-chain aliphatic polyester with an extreme flexibility function, competing with fossil-based polyethylene. This new polyester in-depth characterization confirmed its expected structure (FTIR, 1H, and 13C NMR) and relevant thermal features (DSC, TGA, and DMTA), notably, an essentially amorphous character with a glass transition temperature of -6 °C and main maximum decomposition temperature of 340 °C. Furthermore, PDDbF displayed an elongation at break as high as 732%, around five times higher than that of the 2,5-furandicarboxylic acid counterpart, stressing the unique features of the bisfuranic class of polymers compared to monofuranic ones. The enhanced ductility combined with the relevant thermal properties makes PDDbF a highly promising material for flexible packaging.
Collapse
Affiliation(s)
- Sami Zaidi
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Faculty des Sciences, Laboratory de Chimie Appliquée HCGP, Université de Sfax, Sfax 3038, Tunisia
| | - Abdelkader Bougarech
- Faculty des Sciences, Laboratory de Chimie Appliquée HCGP, Université de Sfax, Sfax 3038, Tunisia
| | - Majdi Abid
- Chemistry Department, College of Science and Arts in Al-Qurayyat, Jouf University, Al-Qurayyat P.O. Box 756, Al Jouf, Saudi Arabia
| | - Souhir Abid
- Faculty des Sciences, Laboratory de Chimie Appliquée HCGP, Université de Sfax, Sfax 3038, Tunisia
- Chemistry Department, College of Science and Arts in Al-Qurayyat, Jouf University, Al-Qurayyat P.O. Box 756, Al Jouf, Saudi Arabia
| | - Armando J D Silvestre
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andreia F Sousa
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
4
|
Karlinskii BY, Ananikov VP. Recent advances in the development of green furan ring-containing polymeric materials based on renewable plant biomass. Chem Soc Rev 2023; 52:836-862. [PMID: 36562482 DOI: 10.1039/d2cs00773h] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fossil resources are rapidly depleting, forcing researchers in various fields of chemistry and materials science to switch to the use of renewable sources and the development of corresponding technologies. In this regard, the field of sustainable materials science is experiencing an extraordinary surge of interest in recent times due to the significant advances made in the development of new polymers with desired and controllable properties. This review summarizes important scientific reports in recent times dedicated to the synthesis, construction and computational studies of novel sustainable polymeric materials containing unchanged (pseudo)aromatic furan cores in their structure. Linear polymers for thermoplastics, branched polymers for thermosets and other crosslinked materials are emerging materials to highlight. Various polymer blends and composites based on sustainable polyfurans are also considered as pathways to achieve high-value-added products.
Collapse
Affiliation(s)
- Bogdan Ya Karlinskii
- Tula State University, Lenin pr. 92, Tula, 300012, Russia.,Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow, 119991, Russia.
| |
Collapse
|
5
|
Zhang W, Wang Q, Wang G, Liu S. The effect of isothermal crystallization on mechanical properties of poly(ethylene 2,5-furandicarboxylate). E-POLYMERS 2021. [DOI: 10.1515/epoly-2022-0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The effects of isothermal crystallization temperature/time on mechanical properties of bio-based polyester poly(ethylene 2,5-furandicarboxylate) (PEF) were investigated. The intrinsic viscosity, crystallization properties, thermal properties, and microstructure of PEF were characterized using ubbelohde viscometer, X-ray diffraction, polarizing optical microscope, differential scanning calorimetry, and scanning electron microscopy. The PEF sample isothermal crystallized at various temperatures for various times was denoted as PEF-T-t. The results showed that the isothermal crystallization temperature affected the mechanical properties of PEF-T-30 by simultaneously affecting its crystallization properties and intrinsic viscosity. The isothermal crystallization time only affected the crystallization properties of PEF-110-t. The crystallinity of PEF-110-40 was 17.1%. With small crystal size, poor regularity, and α′-crystal, PEF-110-40 can absorb the energy generated in the tensile process to the maximum extent. Therefore, the best mechanical properties can be obtained for PEF-110-40 with the tensile strength of 43.55 MPa, the tensile modulus of 1,296 MPa, and the elongation at a break of 13.36%.
Collapse
Affiliation(s)
- Wei Zhang
- Green Chemical Division, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences , Chengdu , Sichuan, 610041 , China
- Department of Materials Engineering, Taiyuan Institute of Technology , Taiyuan , Shanxi, 030008 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Qingyin Wang
- Green Chemical Division, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences , Chengdu , Sichuan, 610041 , China
| | - Gongying Wang
- Green Chemical Division, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences , Chengdu , Sichuan, 610041 , China
| | - Shaoying Liu
- Green Chemical Division, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences , Chengdu , Sichuan, 610041 , China
| |
Collapse
|
6
|
Pandey S, Dumont MJ, Orsat V, Rodrigue D. Biobased 2,5-furandicarboxylic acid (FDCA) and its emerging copolyesters’ properties for packaging applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110778] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Zhang Q, Song M, Xu Y, Wang W, Wang Z, Zhang L. Bio-based polyesters: Recent progress and future prospects. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101430] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Höhnemann T, Steinmann M, Schindler S, Hoss M, König S, Ota A, Dauner M, Buchmeiser MR. Poly(Ethylene Furanoate) along Its Life-Cycle from a Polycondensation Approach to High-Performance Yarn and Its Recyclate. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1044. [PMID: 33672140 PMCID: PMC7926444 DOI: 10.3390/ma14041044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/05/2021] [Accepted: 02/15/2021] [Indexed: 01/06/2023]
Abstract
We report on the pilot scale synthesis and melt spinning of poly(ethylene furanoate) (PEF), a promising bio-based fiber polymer that can heave mechanical properties in the range of commercial poly(ethylene terephthalate) (PET) fibers. Catalyst optimization and solid state polycondensation (SSP) allowed for intrinsic viscosities of PEF of up to 0.85 dL·g-1. Melt-spun multifilament yarns reached a tensile strength of up to 65 cN·tex-1 with an elongation of 6% and a modulus of 1370 cN·tex-1. The crystallization behavior of PEF was investigated by differential scanning calorimetry (DSC) and XRD after each process step, i.e., after polymerization, SSP, melt spinning, drawing, and recycling. After SSP, the previously amorphous polymer showed a crystallinity of 47%, which was in accordance with literature. The corresponding XRD diffractograms showed signals attributable to α-PEF. Additional, clearly assignable signals at 2θ > 30° are discussed. A completely amorphous structure was observed by XRD for as-spun yarns, while a crystalline phase was detected on drawn yarns; however, it was less pronounced than for the granules and independent of the winding speed.
Collapse
Affiliation(s)
| | - Mark Steinmann
- Correspondence: (M.S.); (M.D.); Tel.: +49-711-9430-274 (M.S.); +49-711-9430-218 (M.D.)
| | | | | | | | | | - Martin Dauner
- Correspondence: (M.S.); (M.D.); Tel.: +49-711-9430-274 (M.S.); +49-711-9430-218 (M.D.)
| | | |
Collapse
|
9
|
Gabirondo E, Melendez-Rodriguez B, Arnal C, Lagaron JM, Martínez de Ilarduya A, Sardon H, Torres-Giner S. Organocatalyzed closed-loop chemical recycling of thermo-compressed films of poly(ethylene furanoate). Polym Chem 2021. [DOI: 10.1039/d0py01623c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Poly(ethylene furanoate) (PEF) films were first produced using thermo-compression. Thereafter, the chemical recyclability was demonstrated in the presence of a thermally stable organocatalyst followed by its repolymerization.
Collapse
Affiliation(s)
- Elena Gabirondo
- Department of Polymer Science and Technology
- Institute for Polymer Materials (POLYMAT)
- Faculty of Chemistry
- University of the Basque Country (UPV/EHU)
- 20018 Donostia
| | - Beatriz Melendez-Rodriguez
- Novel Materials and Nanotechnology Group
- Institute of Agrochemistry and Food Technology (IATA)
- Spanish National Research Council (CSIC)
- Valencia
- Spain
| | - Carmen Arnal
- Novel Materials and Nanotechnology Group
- Institute of Agrochemistry and Food Technology (IATA)
- Spanish National Research Council (CSIC)
- Valencia
- Spain
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group
- Institute of Agrochemistry and Food Technology (IATA)
- Spanish National Research Council (CSIC)
- Valencia
- Spain
| | - Antxon Martínez de Ilarduya
- Departament d'Enginyeria Química
- Universitat Politècnica de Catalunya
- Barcelona School of Industrial Engineering (ETSEIB)
- Barcelona
- Spain
| | - Haritz Sardon
- Department of Polymer Science and Technology
- Institute for Polymer Materials (POLYMAT)
- Faculty of Chemistry
- University of the Basque Country (UPV/EHU)
- 20018 Donostia
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group
- Institute of Agrochemistry and Food Technology (IATA)
- Spanish National Research Council (CSIC)
- Valencia
- Spain
| |
Collapse
|
10
|
Wang G, Hao X, Jiang M, Wang R, Liang Y, Zhou G. Partially bio-based copolyesters poly(ethylene 2,5-thiophenedicarboxylate-co-ethylene terephthalate): Synthesis and properties. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Papadopoulos L, Xanthopoulou E, Nikolaidis GN, Zamboulis A, Achilias DS, Papageorgiou GZ, Bikiaris DN. Towards High Molecular Weight Furan-Based Polyesters: Solid State Polymerization Study of Bio-Based Poly(Propylene Furanoate) and Poly(Butylene Furanoate). MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4880. [PMID: 33143165 PMCID: PMC7663070 DOI: 10.3390/ma13214880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 11/16/2022]
Abstract
In the era of polymers from renewable resources, polyesters derived from 2,5 furan dicarboxylic acid (FDCA) have received increasing attention due to their outstanding features. To commercialize them, it is necessary to synthesize high molecular weight polymers through efficient and simple methods. In this study, two furan-based polyesters, namely poly (propylene furanoate) (PPF) and poly(butylene furanoate) (PBF), were synthesized with the conventional two-step melt polycondensation, followed by solid-state polycondensation (SSP) conducted at different temperatures and reaction times. Molecular weight, structure and thermal properties were measured for all resultant polyesters. As expected, increasing SSP time and temperature results in polymers with increased intrinsic viscosity (IV), increased molecular weight and reduced carboxyl end-group content. Finally, those results were used to generate a simple mathematical model that prognosticates the time evolution of the materials' IV and end groups concentration during SSP.
Collapse
Affiliation(s)
- Lazaros Papadopoulos
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (L.P.); (A.Z.); (D.S.A.)
| | - Eleftheria Xanthopoulou
- Department of Chemistry, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece; (E.X.); (G.N.N.); (G.Z.P.)
| | - George N. Nikolaidis
- Department of Chemistry, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece; (E.X.); (G.N.N.); (G.Z.P.)
| | - Alexandra Zamboulis
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (L.P.); (A.Z.); (D.S.A.)
| | - Dimitris S. Achilias
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (L.P.); (A.Z.); (D.S.A.)
| | - George Z. Papageorgiou
- Department of Chemistry, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece; (E.X.); (G.N.N.); (G.Z.P.)
| | - Dimitrios N. Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (L.P.); (A.Z.); (D.S.A.)
| |
Collapse
|
12
|
Loos K, Zhang R, Pereira I, Agostinho B, Hu H, Maniar D, Sbirrazzuoli N, Silvestre AJD, Guigo N, Sousa AF. A Perspective on PEF Synthesis, Properties, and End-Life. Front Chem 2020; 8:585. [PMID: 32850625 PMCID: PMC7413100 DOI: 10.3389/fchem.2020.00585] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/05/2020] [Indexed: 11/30/2022] Open
Abstract
This critical review considers the extensive research and development dedicated, in the last years, to a single polymer, the poly(ethylene 2,5-furandicarboxylate), usually simply referred to as PEF. PEF importance stems from the fact that it is based on renewable resources, typically prepared from C6 sugars present in biomass feedstocks, for its resemblance to the high-performance poly(ethylene terephthalate) (PET) and in terms of barrier properties even outperforming PET. For the first time synthesis, properties, and end-life targeting—a more sustainable PEF—are critically reviewed. The emphasis is placed on how synthetic roots to PEF evolved toward the development of greener processes based on ring open polymerization, enzymatic synthesis, or the use of ionic liquids; together with a broader perspective on PEF end-life, highlighting recycling and (bio)degradation solutions.
Collapse
Affiliation(s)
- Katja Loos
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Ruoyu Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Inês Pereira
- Departamento de Química, CICECO - Aveiro Institute of Materials, Universidade de Aveiro, Aveiro, Portugal
| | - Beatriz Agostinho
- Departamento de Química, CICECO - Aveiro Institute of Materials, Universidade de Aveiro, Aveiro, Portugal
| | - Han Hu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Dina Maniar
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | | | - Armando J D Silvestre
- Departamento de Química, CICECO - Aveiro Institute of Materials, Universidade de Aveiro, Aveiro, Portugal
| | - Nathanael Guigo
- Institute of Chemistry UMR 7272, Université Côte d'Azur, Nice, France
| | - Andreia F Sousa
- Departamento de Química, CICECO - Aveiro Institute of Materials, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
13
|
Sanusi OM, Papadopoulos L, Klonos PA, Terzopoulou Z, Hocine NA, Benelfellah A, Papageorgiou GZ, Kyritsis A, Bikiaris DN. Calorimetric and Dielectric Study of Renewable Poly(hexylene 2,5-furan-dicarboxylate)-Based Nanocomposites In Situ Filled with Small Amounts of Graphene Platelets and Silica Nanoparticles. Polymers (Basel) 2020; 12:E1239. [PMID: 32485937 PMCID: PMC7362010 DOI: 10.3390/polym12061239] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 11/21/2022] Open
Abstract
Poly(hexylene 2,5 furan-dicarboxylate) (PHF) is a relatively new biobased polyester prepared from renewable resources, which is targeted for use in food packaging applications, owing to its great mechanical and gas barrier performance. Since both properties are strongly connected to crystallinity, the latter is enhanced here by the in situ introduction in PHF of graphene nanoplatelets and fumed silica nanoparticles, as well as mixtures of both, at low amounts. For this investigation, we employed Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and dielectric spectroscopy (BDS). The fillers were found to improve crystallization in both the rate (increasing Tc) and fraction (CF), which was rationalized via the concept of fillers acting as crystallization agents. This action was found stronger in the case of graphene as compared to silica. BDS allowed the detection of local and segmental dynamics, in particular in PHF for the first time. The glass transition dynamics in both BDS (α relaxation) and DSC (Tg) are mainly dominated by the relatively high CF, whereas in the PHF filled uniquely with silica strong spatial confinement effects due to crystals were revealed. Finally, all samples demonstrated the segmental-like dynamics above Tg, which screens the global chain dynamics (normal mode).
Collapse
Affiliation(s)
- Olawale Monsur Sanusi
- INSA CVL, Univ. Tours, Univ. Orléans, LaMé, 3 Rue de la Chocolaterie, CS 23410, CEDEX 41034 Blois, France; (O.M.S.); (N.A.H.); (A.B.)
| | - Lazaros Papadopoulos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (L.P.); (Z.T.)
| | - Panagiotis A. Klonos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (L.P.); (Z.T.)
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece;
| | - Zoi Terzopoulou
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (L.P.); (Z.T.)
| | - Nourredine Aït Hocine
- INSA CVL, Univ. Tours, Univ. Orléans, LaMé, 3 Rue de la Chocolaterie, CS 23410, CEDEX 41034 Blois, France; (O.M.S.); (N.A.H.); (A.B.)
| | - Abdelkibir Benelfellah
- INSA CVL, Univ. Tours, Univ. Orléans, LaMé, 3 Rue de la Chocolaterie, CS 23410, CEDEX 41034 Blois, France; (O.M.S.); (N.A.H.); (A.B.)
- DRII, IPSA, 63 Boulevard de Brandebourg, 94200 Ivry-Sur-Seine, France
| | - George Z. Papageorgiou
- Laboratory of Industrial and Food chemistry, Chemistry Department, University of Ioannina, 45110 Ioannina, Greece;
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece;
| | - Dimitrios N. Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece; (L.P.); (Z.T.)
| |
Collapse
|
14
|
Wang P, Linares-Pastén JA, Zhang B. Synthesis, Molecular Docking Simulation, and Enzymatic Degradation of AB-Type Indole-Based Polyesters with Improved Thermal Properties. Biomacromolecules 2020; 21:1078-1090. [DOI: 10.1021/acs.biomac.9b01399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ping Wang
- Centre of Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Javier A. Linares-Pastén
- Division of Biotechnology, Department of Chemistry, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Baozhong Zhang
- Centre of Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, 22100 Lund, Sweden
| |
Collapse
|
15
|
Arza C, Zhang B. Synthesis, Thermal Properties, and Rheological Characteristics of Indole-Based Aromatic Polyesters. ACS OMEGA 2019; 4:15012-15021. [PMID: 31552343 PMCID: PMC6751728 DOI: 10.1021/acsomega.9b01802] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Currently, there is an intensive development of bio-based aromatic building blocks to replace fossil-based terephthalates used for poly(ethylene terephthalate) production. Indole is a ubiquitous aromatic unit in nature, which has great potential as a bio-based feedstock for polymers or plastics. In this study, we describe the synthesis and characterization of new indole-based dicarboxylate monomers with only aromatic ester bonds, which can improve the thermal stability and glass-transition temperature (T g) of the resulting polyesters. The new dicarboxylate monomers were polymerized with five aliphatic diols to yield 10 new polyesters with tunable chemical structures and physical properties. Particularly, the T g values of the obtained polyesters can be as high as 113 °C, as indicated by differential scanning calorimetry and dynamic mechanical analysis. The polyesters showed decent thermal stability and distinct flow transitions as revealed by thermogravimetric analysis and rheology measurements.
Collapse
|
16
|
Banella MB, Bonucci J, Vannini M, Marchese P, Lorenzetti C, Celli A. Insights into the Synthesis of Poly(ethylene 2,5-Furandicarboxylate) from 2,5-Furandicarboxylic Acid: Steps toward Environmental and Food Safety Excellence in Packaging Applications. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b00661] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Maria Barbara Banella
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Jacopo Bonucci
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Micaela Vannini
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Paola Marchese
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Cesare Lorenzetti
- Tetra Pak Packaging Solutions AB, Ruben Rausing Gata, SE-221 86 Lund, Sweden
| | - Annamaria Celli
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| |
Collapse
|