1
|
Gao J, Wang ZQ, Wang ZF, Li B, Liu ZY, Huang JJ, Fang YT, Chen CM. Biomass-based controllable morphology of carbon microspheres with multi-layer hollow structure for superior performance in supercapacitors. J Colloid Interface Sci 2024; 658:90-99. [PMID: 38100979 DOI: 10.1016/j.jcis.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
The electrochemical properties of corn starch (CS)-based hydrothermal carbon microsphere (CMS) electrode materials for supercapacitor are closely related to their structures. Herein, cetyltrimethyl ammonium bromide (CTAB) was used as a soft template to form the corn starch (CS)-based carbon microspheres with radial hollow structure in the inner and middle layers by hydrothermal and sol-gel method. Due to the introduction of multi-layer hollow structure of carbon microsphere, more micropores were produced during CO2 activation, which increased the specific surface area and improved the capacitance performance. Compared to commercial activated carbon, the four different morphologies of corn starch CMS had better electrochemical performances. Consequently, the proposed CO2-(CTAB)-CS-CS exhibits a high discharge specific capacitance of 242.5F/g at 1 A/g in three-electrode system with 6 M KOH electrolyte, better than commercial activated carbon with 208.5F/g. Moreover, excellent stability is achieved for CO2-(CTAB)-CS-CS with approximately 97.14 % retention of the initial specific capacitance value after 10,000 cycles at a current density of 2 A/g, while the commercial activated carbon has 86.96 % retention. This implies that the corn starch-based multilayer hollow CMS could be a promising electrode material for high-performance supercapacitors.
Collapse
Affiliation(s)
- Jing Gao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Qing Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China.
| | - Zhe-Fan Wang
- Xi'an Thermal Power Research Institute CO., LTD, Xi'an 710054, Shaanxi, China
| | - Biao Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China
| | - Zhe-Yu Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China
| | - Jie-Jie Huang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China
| | - Yi-Tian Fang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Cheng-Meng Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, Shanxi, China
| |
Collapse
|
2
|
Chen X, Li Y, Yang Y, Zhang D, Guan Y, Bao M, Wang Z. A super-hydrophobic and antibiofouling membrane constructed from carbon sphere-welded MnO2 nanowires for ultra-fast separation of emulsion. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|