1
|
Chang H, Zhang G, Sun Y, Lu S. Barrel rifling node offset detection and subsequent optimization based on thin film in-mold decoration characteristics of the Johnson-Cook model. Sci Rep 2024; 14:24410. [PMID: 39420183 PMCID: PMC11487179 DOI: 10.1038/s41598-023-47467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/14/2023] [Indexed: 10/19/2024] Open
Abstract
In this paper, a nodal detection method for the detection and optimization of barrel helix offsets is proposed. The barrel used in this experiment is a 6-helix barrel. Moreover, the special properties of the film of Polyetheretherketone (PEEK) material are used to cover the surface of the barrel helix with a virtual in-mold decoration (IMD) film, and the unique nature of the film die offset in the IMD is utilized to detect the position of the barrel helix. The area with a large die index is the area with a large helix offset in the barrel, and the IMD die index is introduced to quantify the data. The IMD die index is used to determine the helix offset of the damaged barrel. The novelty of this work is that each node can use the die index to efficiently detect the position of the barrel helix deviation, carry out subsequent optimization and repair work through the optimization of the injection molding parameters and the design optimization of the barrel and verify the experiment by comparing the results. Through the steady-state simulation research mode, different permutations and combinations of the two process parameters are simulated to study their effects. Quantitative reference indicators include but are not limited to dependent variables such as the fluid flow velocity, shear rate, temperature distribution and phase transition, and the shear heating process of the injection screw is taken into account in the mold flow analysis to ensure that the die index value is more accurate. It can be seen from the analysis results that the temperature of the barrel changes after the groove depth and groove width are changed, and the effect ratio of the groove depth is lower than that of the groove width in the same degree of size change.
Collapse
Affiliation(s)
- Hanjui Chang
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou, 515063, China.
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou, 515063, China.
| | - Guangyi Zhang
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou, 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou, 515063, China
| | - Yue Sun
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou, 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou, 515063, China
| | - Shuzhou Lu
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou, 515063, China
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou, 515063, China
| |
Collapse
|
2
|
Feng T, Guo W, Li W, Meng Z, Zhu Y, Zhao F, Liang W. Unveiling Sustainable Potential: A Life Cycle Assessment of Plant-Fiber Composite Microcellular Foam Molded Automotive Components. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4952. [PMID: 37512227 PMCID: PMC10383067 DOI: 10.3390/ma16144952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
The development and utilization of new plant-fiber composite materials and microcellular foam molding processes for the manufacturing of automotive components are effective approaches when achieving the lightweight, low-carbon, and sustainable development of automobiles. However, current research in this field has mainly focused on component performance development and functional exploration, with a limited assessment of environmental performance, which fails to meet the requirements of the current green and sustainable development agenda. In this study, based on a life cycle assessment, the resource, and environmental impacts of plant-fiber composite material automotive components and microcellular foam molding processes were investigated. Furthermore, a combined approach to digital twinning and life cycle evaluation was proposed to conduct resource and environmental assessments and analysis. The research results indicate that under current technological conditions, resource and environmental issues associated with plant-fiber composite material automotive components are significantly higher than those of traditional material components, mainly due to differences in their early-stage processes and the consumption of electrical energy and chemical raw materials. It is noteworthy that electricity consumption is the largest influencing factor that causes environmental issues throughout the life cycle, especially accounting for more than 42% of indicators such as ozone depletion, fossil resource consumption, and carbon dioxide emissions. Additionally, the microcellular foam molding process can effectively reduce the environmental impact of products by approximately 15% and exhibits better overall environmental performance compared to chemical foaming. In future development, optimizing the forming process of plant-fiber composite materials, increasing the proportion of clean energy use, and promoting the adoption of microcellular foam injection molding processes could be crucial for the green and sustainable development of automotive components.
Collapse
Affiliation(s)
- Tao Feng
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
- Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China
- Hubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan University of Technology, Wuhan 430070, China
| | - Wei Guo
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
- Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China
- Hubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan University of Technology, Wuhan 430070, China
- Institute of Advanced Materials and Manufacturing Technology, Wuhan University of Technology, Wuhan 430070, China
| | - Wei Li
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
- Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China
- Hubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan University of Technology, Wuhan 430070, China
- SAIC-GM-Wuling Automobile Co., Ltd., Liuzhou 545007, China
| | - Zhenghua Meng
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
- Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China
- Hubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan University of Technology, Wuhan 430070, China
- Institute of Advanced Materials and Manufacturing Technology, Wuhan University of Technology, Wuhan 430070, China
| | - Yao Zhu
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
- Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China
- Hubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan University of Technology, Wuhan 430070, China
| | - Feng Zhao
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
- Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China
- Hubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan University of Technology, Wuhan 430070, China
| | - Weicheng Liang
- Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan 430070, China
- Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China
- Hubei Research Center for New Energy & Intelligent Connected Vehicle, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
3
|
Lin W, Hamamoto Y, Hikima Y, Ohshima M. Improvement of the surface quality of foam injection molded products from a material property perspective. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Weiyuan Lin
- Department of Chemical Engineering Kyoto University Kyoto Japan
| | | | - Yuta Hikima
- Department of Chemical Engineering Kyoto University Kyoto Japan
| | | |
Collapse
|
4
|
Lee D, Lin YK, Hsu SC, Tang YL, Liu SJ. Factors determining the flow erosion/part deformation of film insert molded thermoplastic products. INT POLYM PROC 2022. [DOI: 10.1515/ipp-2021-4194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Flow erosion and part deformation are unsolved molding problems that restrict the overall success of film insert molding. This work investigated, both experimentally and numerically, the factors that affect flow erosion and part deformation in film inset molded products. Three plate-with-thickness-variation geometries, namely flat, thin-to-thick, and thick-to thin, were molded for the products. Polystyrene films and polyethylene terephthalate (PET) resins were employed in the experiments. It was found that the thin-to-thick specimens exhibited the most severe flow erosion. Increasing the injection pressure or melt temperature worsened flow erosion. Meanwhile, for the processing parameters adopted in the experiments, part deformation generally increased with melt temperature and hold time, while it decreased with injection pressure and hold pressure. Additionally, a numerical software (Moldex® 3-D) was employed to simulate the temperature and shear stress distributions in molded products. The calculated results suggested that part deformation in insert molded products results mainly from the non-uniform temperature profile during the cooling stage, owing to the product configuration and the insert film, while flow erosion is induced by the high shear stress of the polymer melt in the filling stage.
Collapse
Affiliation(s)
- Demei Lee
- Department of Mechanical Engineering , Chang Gung University , 33302 , Tao-Yuan , ROC
| | - Yu-Kai Lin
- Department of Mechanical Engineering , Chang Gung University , 33302 , Tao-Yuan , ROC
| | - Siang-Chen Hsu
- Department of Mechanical Engineering , Chang Gung University , 33302 , Tao-Yuan , ROC
| | - Ya-Ling Tang
- Department of Mechanical Engineering , Chang Gung University , 33302 , Tao-Yuan , ROC
| | - Shih-Jung Liu
- Department of Mechanical Engineering , Chang Gung University , 33302 , Tao-Yuan , ROC
- Department of Orthopedic Surgery , Chang Gung Memorial Hospital , 33305 , Tao-Yuan , ROC
| |
Collapse
|
5
|
Chang H, Zhang G, Sun Y, Lu S. Non-Dominant Genetic Algorithm for Multi-Objective Optimization Design of Unmanned Aerial Vehicle Shell Process. Polymers (Basel) 2022; 14:polym14142896. [PMID: 35890672 PMCID: PMC9322716 DOI: 10.3390/polym14142896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
This paper uses Pareto-optimized frames and injection molding process parameters to optimize the quality of UAV housing parts with multi-objective optimization. Process parameters, such as melt temperature, filling time, pressure, and pressure time, were studied as model variables. The quality of a plastic part is determined by two defect parameters, warpage value and mold index, which require minimal defect parameters. This paper proposes a three-stage optimization system. In the first stage, the main node position of the electronic chip in the module is collected by the unified sampling method, and the chip calculation index of these node positions is analyzed by the mold flow analysis software. In the second stage, the kriging function predicts the mathematical relationship between the mold index and warpage value and the process parameters, such as melt temperature, filling time, packing pressure, and packing time. In the third stage, using LHD sampling and non-dominant rank genetic algorithm II, a convergence curve of warp value is found near the Pareto optimal frontier. In the fourth stage, the fitting degree of Pareto optimal leading edge curve points was verified by analytical experiments. According to experimental verification, it can be seen that the injection molding factors are pressure and pressure time, because the injection molding time and pressure time are completely positively correlated with the mold indicators, the correlation is the strongest, the mold temperature and glue temperature are not the main influencing factors, and the mold temperature shows a certain degree of negative correlation. In this experiment, the die index is mainly improved by injection time and pressure, optimal injection parameter factor combination and minimum injection index, the optimization rate of the die index is up to 96.2% through genetic algorithm optimization nodes and experimental verification, the average optimization rate of the four main optimization nodes is 91.2%, and the error rate with the actual situation is only 8.48%, which is in line with the needs of actual production, and the improvement of the UAV IME membrane is realized.
Collapse
Affiliation(s)
- Hanjui Chang
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China; (G.Z.); (Y.S.); (S.L.)
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
- Correspondence:
| | - Guangyi Zhang
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China; (G.Z.); (Y.S.); (S.L.)
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Yue Sun
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China; (G.Z.); (Y.S.); (S.L.)
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| | - Shuzhou Lu
- Department of Mechanical Engineering, College of Engineering, Shantou University, Shantou 515063, China; (G.Z.); (Y.S.); (S.L.)
- Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou 515063, China
| |
Collapse
|
6
|
Jiang J, Li Z, Yang H, Wang X, Li Q, Turng LS. Microcellular injection molding of polymers: a review of process know-how, emerging technologies, and future directions. Curr Opin Chem Eng 2021. [DOI: 10.1016/j.coche.2021.100694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Minh PS, Le MT. Improving the Melt Flow Length of Acrylonitrile Butadiene Styrene in Thin-Wall Injection Molding by External Induction Heating with the Assistance of a Rotation Device. Polymers (Basel) 2021; 13:polym13142288. [PMID: 34301045 PMCID: PMC8309440 DOI: 10.3390/polym13142288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 01/25/2023] Open
Abstract
In injection molding, the temperature control of the dynamic mold is an excellent method for improving the melt flow length, especially of thin-wall products. In this study, the heating efficiency of a novel heating strategy based on induction heating was estimated. With the use of this heating strategy, a molding cycle time similar to the traditional injection molding process could be maintained. In addition, this strategy makes it easier to carry out the heating step due to the separation of the heating position and the mold structure as well as allowing the ease of magnetic control. The results show that, with an initial mold temperature of 30 °C and a gap (G) between the heating surface and the inductor coil of 5 mm, the magnetic heating process can heat the plate to 290 °C within 5 s. However, with a gap of 15 mm, it took up to 8 s to reach 270 °C. According to the measurement results, when the mold heating time during the molding process increased from 0 to 5 s, the flow length increased significantly from 71.5 to 168.1 mm, and the filling percentage of the thin-wall product also increased from 10.2% to 100%. In general, the application of external induction heating (Ex-IH) during the molding cycle resulted in improved melt flow length with minimal increase in the total cycle time, which remained similar to that of the traditional case.
Collapse
|
8
|
A Design of Experiment Approach for Surface Roughness Comparisons of Foam Injection-Moulding Methods. MATERIALS 2020; 13:ma13102358. [PMID: 32443909 PMCID: PMC7287706 DOI: 10.3390/ma13102358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 11/17/2022]
Abstract
The pursuit of polymer parts produced through foam injection moulding (FIM) that have a comparable surface roughness to conventionally processed components are of major relevance to expand the application of FIM. Within this study, 22% talc-filled copolymer polypropylene (PP) parts were produced through FIM using both a physical and chemical blowing agent. A design of experiments (DoE) was performed whereby the processing parameters of mould temperatures, injection speeds, back-pressure, melt temperature and holding time were varied to determine their effect on surface roughness, Young’s modulus and tensile strength. The results showed that mechanical performance can be improved when processing with higher mould temperatures and longer holding times. Also, it was observed that when utilising chemical foaming agents (CBA) at low-pressure, surface roughness comparable to that obtained from conventionally processed components can be achieved. This research demonstrates the potential of FIM to expand to applications whereby weight saving can be achieved without introducing surface defects, which has previously been witnessed within FIM.
Collapse
|
9
|
Carbon-Based Polymer Nanocomposites for High-Performance Applications. Polymers (Basel) 2020; 12:polym12040872. [PMID: 32290251 PMCID: PMC7240536 DOI: 10.3390/polym12040872] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
|
10
|
Abstract
Injection moulding is a well-established replication process for the cost-effective manufacture of polymer-based components. The process has different applications in fields such as medical, automotive and aerospace. To expand the use of polymers to meet growing consumer demands for increased functionality, advanced injection moulding processes have been developed that modifies the polymer to create microcellular structures. Through the creation of microcellular materials, additional functionality can be gained through polymer component weight and processing energy reduction. Microcellular injection moulding shows high potential in creating innovation green manufacturing platforms. This review article aims to present the significant developments that have been achieved in different aspects of microcellular injection moulding. Aspects covered include core-back, gas counter pressure, variable thermal tool moulding and other advanced technologies. The resulting characteristics of creating microcellular injection moulding components through both plasticising agents and nucleating agents are presented. In addition, the article highlights potential areas for research exploitation. In particular, acoustic and thermal applications, nano-cellular injection moulding parts and developments of more accurate simulations.
Collapse
Affiliation(s)
| | - Andrew Rees
- College of Engineering, Swansea University, Swansea, UK
| | | | | |
Collapse
|
11
|
Zhang R, Chen J, Zhu Y, Zhang J, Luo G, Cao P, Shen Q, Zhang L. Correlation Between the Structure and Compressive Property of PMMA Microcellular Foams Fabricated by Supercritical CO 2 Foaming Method. Polymers (Basel) 2020; 12:polym12020315. [PMID: 32028727 PMCID: PMC7077491 DOI: 10.3390/polym12020315] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/12/2020] [Accepted: 01/27/2020] [Indexed: 11/16/2022] Open
Abstract
In this study, we fabricated poly (methyl methacrylate) (PMMA) microcellular foams featuring tunable cellular structures and porosity, through adjusting the supercritical CO2 foaming conditions. Experimental testing and finite element model (FEM) simulations were conducted to systematically elucidate the influence of the foaming parameters and structure on compressive properties of the foam. The correlation between the cellular structure and mechanical properties was acquired by separating the effects of the cell size and foam porosity. It was found that cell size reduction contributes to improved mechanical properties, which can be attributed to the dispersion of stress and decreasing stress concentration.
Collapse
Affiliation(s)
- Ruizhi Zhang
- State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (R.Z.); (J.C.); (Y.Z.); (J.Z.); (Q.S.); (L.Z.)
| | - Ju Chen
- State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (R.Z.); (J.C.); (Y.Z.); (J.Z.); (Q.S.); (L.Z.)
| | - Yuxuan Zhu
- State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (R.Z.); (J.C.); (Y.Z.); (J.Z.); (Q.S.); (L.Z.)
| | - Jian Zhang
- State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (R.Z.); (J.C.); (Y.Z.); (J.Z.); (Q.S.); (L.Z.)
| | - Guoqiang Luo
- State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (R.Z.); (J.C.); (Y.Z.); (J.Z.); (Q.S.); (L.Z.)
- Correspondence:
| | - Peng Cao
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China;
| | - Qiang Shen
- State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (R.Z.); (J.C.); (Y.Z.); (J.Z.); (Q.S.); (L.Z.)
| | - Lianmeng Zhang
- State Key Lab of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China; (R.Z.); (J.C.); (Y.Z.); (J.Z.); (Q.S.); (L.Z.)
| |
Collapse
|
12
|
Peng Z, Gou N, Wei Z, Zhao J, Wang F, Yang J, Li Y, Lan H. Fabrication of a Large-Area, Fused Polymer Micromold Based on Electric-Field-Driven (EFD) μ-3D Printing. Polymers (Basel) 2019; 11:polym11111902. [PMID: 31752165 PMCID: PMC6918298 DOI: 10.3390/polym11111902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/17/2022] Open
Abstract
An electric-field-driven (EFD), μ-3D printed, fused polymer technique has been developed for the fabrication of large-area microscale prototype molds using typical polymer materials, including microcrystalline wax (MC-wax), polycaprolactone (PCL), and polymathic methacrylate (PMMA). This work proposes an alternative for large area microscale modes and overcomes the limitation of high cost in the traditional mold manufacturing industry. The EFD principle enables printing of fused polymers materials more than one order of magnitude lower than the nozzle diameter, contributing to the necking effect of the Taylor cone jet, which is the key factor to achieve the microscale manufacturing. Numerical simulation of electric field distribution between the meniscus and substrate was carried out to elucidate the dependence of electric field distribution on the meniscus condition of three types of polymers under printable voltage, and the electrical field parameters for the EFD μ-3D printing were determined. A number of experiments were printed successfully using a large range of viscosity materials, ranging from tens of mPa·s to hundreds of thousands of mPa·s of PCL and PMMA. The differences in parameters of different materials, such as viscosity, tensile properties, and surface energy, were studied to assess their use in different fields. Using proper process parameters and a nozzle with an inner diameter of 200 μm, three different application cases were completed, including a Wax microarray and microchannel with a minimum dot diameter of 20 μm, a PCL mesh structure with a minimum line width of 5 μm, and a PMMA large-area mold with a maximum aspect ratio of 0.8. Results show that the EFD μ-3D printing has the outstanding advantages of high printing resolution and polymer material universality.
Collapse
|
13
|
Three-Dimensionally-Printed Polyether-Ether-Ketone Implant with a Cross-Linked Structure and Acid-Etched Microporous Surface Promotes Integration with Soft Tissue. Int J Mol Sci 2019; 20:ijms20153811. [PMID: 31382697 PMCID: PMC6695707 DOI: 10.3390/ijms20153811] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/25/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
Polyether-ether-ketone (peek) is one of the most common materials used for load-bearing orthopedic devices owing to its radiolucency and favorable mechanical properties. However, current smooth-surfaced peek implants can lead to fibrous capsule formation. To overcome this issue, here, peek specimens with well-defined internal cross-linked structures (macropore diameters of 1.0–2.0 mm) were fabricated using a three-dimensional (3D) printer, and an acid-etched microporous surface was achieved using injection-molding technology. The cell adhesion properties of smooth and microporous peek specimens was compared in vitro through a scanning electron microscope (SEM), and the soft tissue responses to the both microporous and cross-linked structure of different groups were determined in vivo using a New Zealand white rabbit model, and examined through histologic staining and separating test. The results showed that the acid-etched microporous surface promoted human skin fibroblasts (HSF) adherence, while internal cross-linked structure improved the ability of the peek specimen to form a mechanical combination with soft tissue, especially with the 1.5 mm porous specimen. The peek specimens with both the internal cross-linked structure and external acid-etched microporous surface could effectively promote the close integration of soft tissue and prevent formation of fibrous capsules, demonstrating the potential for clinical application in surgical repair.
Collapse
|