1
|
Rodrigues JGP, Arias S, Pacheco JGA, Dias ML. Structure and thermal behavior of biobased vitrimer of lactic acid and epoxidized canola oil. RSC Adv 2023; 13:33613-33624. [PMID: 38019990 PMCID: PMC10652253 DOI: 10.1039/d3ra06272d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/05/2023] [Indexed: 12/01/2023] Open
Abstract
Biobased vitrimers were obtained from epoxidized canola oil (ECO) and lactic acid (LA) using zinc acetate (ZnAc) and ZnAl-layered double hydroxide (ZnAl) in the proportions of 1 and 2 wt% as transesterification catalysts. Reactions containing ECO and LA showed an average enthalpy of cure of approximately 85 mJ mg-1 and materials cured in the presence of the catalysts showed lower enthalpies of cure and decrease in the material gel content. ECO-LA reaction generated materials with rubber-like properties with Tg ranging from -15 °C to -23 °C, where the material without a catalyst showed the higher Tg value. The presence of catalysts gave the material vitrimer properties, with the softening point associated with transesterification reactions and topology freezing temperature transition at temperatures (Tv) between 195-235 °C.
Collapse
Affiliation(s)
- João Gabriel P Rodrigues
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro Brazil
| | - Santiago Arias
- Chemistry Institute, Federal University of Pernambuco Brazil
| | | | - Marcos Lopes Dias
- Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro Brazil
| |
Collapse
|
2
|
Abdel-Aty AA, Ahmed RM, ElSherbiny IM, Panglisch S, Ulbricht M, Khalil AS. Superior Separation of Industrial Oil-in-Water Emulsions Utilizing Surface Patterned Isotropic PES Membranes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
3
|
Liu YJ, Lu YN, Liang DQ, Hu YS, Huang YX. Multi-Layered Branched Surface Fluorination on PVDF Membrane for Anti-Scaling Membrane Distillation. MEMBRANES 2022; 12:membranes12080743. [PMID: 36005658 PMCID: PMC9416731 DOI: 10.3390/membranes12080743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
Membrane distillation (MD) has emerged as a promising technology for hypersaline wastewater treatment. However, membrane scaling is still a critical issue for common hydrophobic MD membranes. Herein, we report a multi-layered surface modification strategy on the commercial polyvinylidene fluoride (PVDF) membrane via plasma treatment and surface fluorination cycles. The repeated plasma treatment process generates more reaction sites for the fluorination reaction, leading to higher fluorination density and more branched structures. MD tests with CaSO4 as the scaling agent show that the modification strategy mentioned above improves the membrane scaling resistance. Notably, the PVDF membrane treated with three cycles of plasma and fluorination treatments exhibits the best anti-scaling performance while maintaining almost the same membrane flux as the unmodified PVDF membrane. This study suggests that a highly branched surface molecular structure with low surface energy benefits the MD process in both membrane flux and scaling resistance. Besides, our research demonstrates a universal and facile approach for membrane treatment to improve membrane scaling resistance.
Collapse
Affiliation(s)
- Yu-Jing Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Y.-J.L.); (Y.-N.L.); (D.-Q.L.); (Y.-S.H.)
| | - Yan-Nan Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Y.-J.L.); (Y.-N.L.); (D.-Q.L.); (Y.-S.H.)
| | - Dong-Qing Liang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Y.-J.L.); (Y.-N.L.); (D.-Q.L.); (Y.-S.H.)
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yin-Shuang Hu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Y.-J.L.); (Y.-N.L.); (D.-Q.L.); (Y.-S.H.)
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yu-Xi Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; (Y.-J.L.); (Y.-N.L.); (D.-Q.L.); (Y.-S.H.)
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
- Correspondence:
| |
Collapse
|
4
|
Review of New Approaches for Fouling Mitigation in Membrane Separation Processes in Water Treatment Applications. SEPARATIONS 2021. [DOI: 10.3390/separations9010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This review investigates antifouling agents used in the process of membrane separation (MS), in reverse osmosis (RO), ultrafiltration (UF), nanofiltration (NF), microfiltration (MF), membrane distillation (MD), and membrane bioreactors (MBR), and clarifies the fouling mechanism. Membrane fouling is an incomplete substance formed on the membrane surface, which will quickly reduce the permeation flux and damage the membrane. Foulant is colloidal matter: organic matter (humic acid, protein, carbohydrate, nano/microplastics), inorganic matter (clay such as potassium montmorillonite, silica salt, metal oxide, etc.), and biological matter (viruses, bacteria and microorganisms adhering to the surface of the membrane in the case of nutrients) The stability and performance of the tested nanometric membranes, as well as the mitigation of pollution assisted by electricity and the cleaning and repair of membranes, are reported. Physical, chemical, physico-chemical, and biological methods for cleaning membranes. Biologically induced biofilm dispersion effectively controls fouling. Dynamic changes in membrane foulants during long-term operation are critical to the development and implementation of fouling control methods. Membrane fouling control strategies show that improving membrane performance is not only the end goal, but new ideas and new technologies for membrane cleaning and repair need to be explored and developed in order to develop future applications.
Collapse
|
5
|
Wan Osman WNA, Mat Nawi NI, Samsuri S, Bilad MR, Wibisono Y, Hernández Yáñez E, Md Saad J. A Review on Recent Progress in Membrane Distillation Crystallization. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wan Nur Aisyah Wan Osman
- Universiti Teknologi PETRONAS Department of Chemical Engineering 32610 Bandar Seri Iskandar Malaysia
- Universiti Teknologi PETRONAS HICoE Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building Department of Chemical Engineering 32610 Bandar Seri Iskandar Malaysia
| | - Normi Izati Mat Nawi
- Universiti Teknologi PETRONAS Department of Chemical Engineering 32610 Bandar Seri Iskandar Malaysia
| | - Shafirah Samsuri
- Universiti Teknologi PETRONAS Department of Chemical Engineering 32610 Bandar Seri Iskandar Malaysia
- Universiti Teknologi PETRONAS HICoE Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building Department of Chemical Engineering 32610 Bandar Seri Iskandar Malaysia
| | - Muhammad Roil Bilad
- Universiti Brunei Darussalam Faculty of Integrated Technologies BE1410 Gadong Brunei
| | - Yusuf Wibisono
- Brawijaya University Department of Bioprocess Engineering 65141 Malang Indonesia
| | - Eduard Hernández Yáñez
- Universitat Politècnica de Catalunya (UPC) Barcelona TECH, Department of Agrifood Engineering and Biotechnology 08860 Castelldefels Spain
| | - Juniza Md Saad
- Universiti Putra Malaysia Department of Science and Technology 97008 Bintulu Malaysia
| |
Collapse
|
6
|
El-badawy T, Othman MHD, Matsuura T, Bilad MR, Adam MR, Tai ZS, Ravi J, Ismail A, Rahman MA, Jaafar J, Usman J, Kurniawan TA. Progress in treatment of oilfield produced water using membrane distillation and potentials for beneficial re-use. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Membrane Filtration as Post-Treatment of Rotating Biological Contactor for Wastewater Treatment. SUSTAINABILITY 2021. [DOI: 10.3390/su13137287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A rotating biological contactor (RBC) offers a low energy footprint but suffers from performance instability, making it less popular for domestic wastewater treatment. This paper presents a study on an RBC integrated with membrane technology in which membrane filtration was used as a post-treatment step (RBC–ME) to achieve enhanced biological performance. The RBC and RBC–ME systems were operated under different hydraulic retention times (HRTs) of 12, 18, 24, and 48 h, and the effects of HRT on biological performance and effluent filterability were assessed. The results show that RBC–ME demonstrates superior biological performance than the standalone RBC. The RBC–ME bioreactor achieved 87.9 ± 3.2% of chemical oxygen demand (COD), 98.9 ± 1.1% ammonium, 45.2 ± 0.7% total nitrogen (TN), and 97.9 ± 0.1% turbidity removals. A comparison of the HRTs showed that COD and TN removal efficiency was the highest at 48 h, with 92.4 ± 2.4% and 48.6 ± 1.3% removal efficiencies, respectively. The longer HRTs also lead to better RBC effluent filterability. The steady-state permeability increased respectively by 2.4%, 9.5%, and 19.1% at HRTs of 18, 24, and 48 h, compared to 12 h. Our analysis of membrane fouling shows that fouling resistance decreased at higher HRTs. Overall, RBC–ME offered a promising alternative for traditional suspended growth processes with higher microbial activity and enhanced biological performance, which is in line with the requirements of sustainable development and environment-friendly treatment.
Collapse
|
8
|
Showerhead feed distribution for optimized performance of large scale membrane distillation modules. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118664] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Mat Nawi NI, Bilad MR, Anath G, Nordin NAH, Kurnia JC, Wibisono Y, Arahman N. The Water Flux Dynamic in a Hybrid Forward Osmosis-Membrane Distillation for Produced Water Treatment. MEMBRANES 2020; 10:E225. [PMID: 32916834 PMCID: PMC7558008 DOI: 10.3390/membranes10090225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/31/2022]
Abstract
Standalone membrane distillation (MD) and forward osmosis (FO) have been considered as promising technologies for produced water treatment. However, standalone MD is still vulnerable to membrane-wetting and scaling problems, while the standalone FO is energy-intensive, since it requires the recovery of the draw solution (DS). Thus, the idea of coupling FO and MD is proposed as a promising combination in which the MD facilitate DS recovery for FO-and FO acts as pretreatment to enhance fouling and wetting-resistance of the MD. This study was therefore conducted to investigate the effect of DS temperature on the dynamic of water flux of a hybrid FO-MD. First, the effect of the DS temperature on the standalone FO and MD was evaluated. Later, the flux dynamics of both units were evaluated when the FO and DS recovery (via MD) was run simultaneously. Results show that an increase in the temperature difference (from 20 to 60 °C) resulted in an increase of the FO and MD fluxes from 11.17 ± 3.85 to 30.17 ± 5.51 L m-2 h-1, and from 0.5 ± 0.75 to 16.08 L m-2 h-1, respectively. For the hybrid FO-MD, either MD or FO could act as the limiting process that dictates the equilibrium flux. Both the concentration and the temperature of DS affected the flux dynamic. When the FO flux was higher than MD flux, DS was diluted, and its temperature decreased; both then lowered the FO flux until reaching an equilibrium (equal FO and MD flux). When FO flux was lower than MD flux, the DS was concentrated which increased the FO flux until reaching the equilibrium. The overall results suggest the importance of temperature and concentration of solutes in the DS in affecting the water flux dynamic hybrid process.
Collapse
Affiliation(s)
- Normi Izati Mat Nawi
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia; (N.I.M.N.); (G.A.); (N.A.H.N.)
| | - Muhammad Roil Bilad
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia; (N.I.M.N.); (G.A.); (N.A.H.N.)
| | - Ganeswaran Anath
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia; (N.I.M.N.); (G.A.); (N.A.H.N.)
| | - Nik Abdul Hadi Nordin
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak 32610, Malaysia; (N.I.M.N.); (G.A.); (N.A.H.N.)
| | - Jundika Candra Kurnia
- Department of Mechanical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia;
| | - Yusuf Wibisono
- Bioprocess Engineering, Brawijaya University, Malang 65141, Indonesia;
| | - Nasrul Arahman
- Department of Chemical Engineering, Universitas Syiah Kuala, Banda Aceh 23111, Indonesia;
| |
Collapse
|
10
|
Two-Step Dopamine-to-Polydopamine Modification of Polyethersulfone Ultrafiltration Membrane for Enhancing Anti-Fouling and Ultraviolet Resistant Properties. Polymers (Basel) 2020; 12:polym12092051. [PMID: 32916778 PMCID: PMC7569805 DOI: 10.3390/polym12092051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/01/2020] [Accepted: 08/07/2020] [Indexed: 11/16/2022] Open
Abstract
Polydopamine has been widely used as an additive to enhance membrane fouling resistance. This study reports the effects of two-step dopamine-to-polydopamine modification on the permeation, antifouling, and potential anti-UV properties of polyethersulfone (PES)-based ultrafiltration membranes. The modification was performed through a two-step mechanism: adding the dopamine additive followed by immersion into Tris-HCl solution to allow polymerization of dopamine into polydopamine (PDA). The results reveal that the step of treatment, the concentration of dopamine in the first step, and the duration of dipping in the Tris solution in the second step affect the properties of the resulting membranes. Higher dopamine loadings improve the pure water flux (PWF) by more than threefold (15 vs. 50 L/m2·h). The extended dipping period in the Tris alkaline buffer leads to an overgrowth of the PDA layer that partly covers the surface pores which lowers the PWF. The presence of dopamine or polydopamine enhances the hydrophilicity due to the enrichment of hydrophilic catechol moieties which leads to better anti-fouling. Moreover, the polydopamine film also improves the membrane resistance to UV irradiation by minimizing photodegradation's occurrence.
Collapse
|
11
|
Long-Running Comparison of Feed-Water Scaling in Membrane Distillation. MEMBRANES 2020; 10:membranes10080173. [PMID: 32751820 PMCID: PMC7463528 DOI: 10.3390/membranes10080173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 11/20/2022]
Abstract
Membrane distillation (MD) has shown promise for concentrating a wide variety of brines, but the knowledge is limited on how different brines impact salt scaling, flux decline, and subsequent wetting. Furthermore, past studies have lacked critical details and analysis to enable a physical understanding, including the length of experiments, the inclusion of salt kinetics, impact of antiscalants, and variability between feed-water types. To address this gap, we examined the system performance, water recovery, scale formation, and saturation index of a lab-scale vacuum membrane distillation (VMD) in long-running test runs approaching 200 h. The tests provided a comparison of a variety of relevant feed solutions, including a synthetic seawater reverse osmosis brine with a salinity of 8.0 g/L, tap water, and NaCl, and included an antiscalant. Saturation modeling indicated that calcite and aragonite were the main foulants contributing to permeate flux reduction. The longer operation times than typical studies revealed several insights. First, scaling could reduce permeate flux dramatically, seen here as 49% for the synthetic brine, when reaching a high recovery ratio of 91%. Second, salt crystallization on the membrane surface could have a long-delayed but subsequently significant impact, as the permeate flux experienced a precipitous decline only after 72 h of continuous operation. Several scaling-resistant impacts were observed as well. Although use of an antiscalant did not reduce the decrease in flux, it extended membrane operational time before surface foulants caused membrane wetting. Additionally, numerous calcium, magnesium, and carbonate salts, as well as silica, reached very high saturation indices (>1). Despite this, scaling without wetting was often observed, and scaling was consistently reversible and easily washed. Under heavy scaling conditions, many areas lacked deposits, which enabled continued operation; existing MD performance models lack this effect by assuming uniform layers. This work implies that longer times are needed for MD fouling experiments, and provides further scaling-resistant evidence for MD.
Collapse
|
12
|
Sinha Ray S, Singh Bakshi H, Dangayach R, Singh R, Deb CK, Ganesapillai M, Chen SS, Purkait MK. Recent Developments in Nanomaterials-Modified Membranes for Improved Membrane Distillation Performance. MEMBRANES 2020; 10:E140. [PMID: 32635417 PMCID: PMC7408142 DOI: 10.3390/membranes10070140] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/03/2023]
Abstract
Membrane distillation (MD) is a thermally induced membrane separation process that utilizes vapor pressure variance to permeate the more volatile constituent, typically water as vapor, across a hydrophobic membrane and rejects the less volatile components of the feed. Permeate flux decline, membrane fouling, and wetting are some serious challenges faced in MD operations. Thus, in recent years, various studies have been carried out on the modification of these MD membranes by incorporating nanomaterials to overcome these challenges and significantly improve the performance of these membranes. This review provides a comprehensive evaluation of the incorporation of new generation nanomaterials such as quantum dots, metalloids and metal oxide-based nanoparticles, metal organic frameworks (MOFs), and carbon-based nanomaterials in the MD membrane. The desired characteristics of the membrane for MD operations, such as a higher liquid entry pressure (LEPw), permeability, porosity, hydrophobicity, chemical stability, thermal conductivity, and mechanical strength, have been thoroughly discussed. Additionally, methodologies adopted for the incorporation of nanomaterials in these membranes, including surface grafting, plasma polymerization, interfacial polymerization, dip coating, and the efficacy of these modified membranes in various MD operations along with their applications are addressed. Further, the current challenges in modifying MD membranes using nanomaterials along with prominent future aspects have been systematically elaborated.
Collapse
Affiliation(s)
- Saikat Sinha Ray
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
| | - Harshdeep Singh Bakshi
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Raghav Dangayach
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Randeep Singh
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India;
| | - Chinmoy Kanti Deb
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Mahesh Ganesapillai
- School of Chemical Engineering, Vellore Institute of Technology (VIT), Vellore 632014, India;
| | - Shiao-Shing Chen
- Institute of Environmental Engineering and Management, National Taipei University of Technology, Taipei City 106, Taiwan; (H.S.B.); (R.D.); (R.S.)
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, India;
| |
Collapse
|
13
|
Development of Hydrophilic PVDF Membrane Using Vapour Induced Phase Separation Method for Produced Water Treatment. MEMBRANES 2020; 10:membranes10060121. [PMID: 32560031 PMCID: PMC7345896 DOI: 10.3390/membranes10060121] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 11/16/2022]
Abstract
During the production of oil and gas, a large amount of oily wastewater is generated, which would pollute the environment if discharged without proper treatment. As one of the most promising treatment options, membrane material used for oily wastewater treatment should possess desirable properties of high hydraulic performance combined with high membrane fouling resistance. This project employs the vapor induced phase separation (VIPS) technique to develop a hydrophilic polyvinylidene fluoride (PVDF) membrane with polyethylene glycol (PEG) as an additive for produced water treatment. Results show that thanks to its slow nonsolvent intake, the VIPS method hinders additive leaching during the cast film immersion. The results also reveal that the exposure of the film to the open air before immersion greatly influences the structure of the developed membranes. By extending the exposure time from 0 to 30 min, the membrane morphology change from typical asymmetric with large macrovoids to the macrovoid-free porous symmetric membrane with a granular structure, which corresponds to 35% increment of steady-state permeability to 189 L·m−2h−1bar−1, while maintaining >90% of oil rejection. It was also found that more PEG content resides in the membrane matrix when the exposure time is extended, contributes to the elevation of surface hydrophilicity, which improves the membrane antifouling properties. Overall results demonstrate the potential of VIPS method for the fabrication of hydrophilic PVDF membrane by helping to preserve hydrophilic additive in the membrane matrices.
Collapse
|
14
|
Osman A, Mat Nawi NI, Samsuri S, Bilad MR, Shamsuddin N, Khan AL, Jaafar J, Nordin NAH. Patterned Membrane in an Energy-Efficient Tilted Panel Filtration System for Fouling Control in Activated Sludge Filtration. Polymers (Basel) 2020; 12:polym12020432. [PMID: 32059397 PMCID: PMC7077623 DOI: 10.3390/polym12020432] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/09/2019] [Accepted: 01/03/2020] [Indexed: 11/16/2022] Open
Abstract
A membrane bioreactor enhances the overall biological performance of a conventional activated sludge system for wastewater treatment by producing high-quality effluent suitable for reuse. However, membrane fouling hinders the widespread application of membrane bioreactors by reducing the hydraulic performance, shortening membrane lifespan, and increasing the operational costs for membrane fouling management. This study assesses the combined effect of membrane surface corrugation and a tilted panel in enhancing the impact of air bubbling for membrane fouling control in activated sludge filtration, applicable for membrane bioreactors. The filterability performance of such a system was further tested under variable parameters: Filtration cycle, aeration rate, and intermittent aeration. Results show that a combination of surface corrugation and panel tilting enhances the impact of aeration and leads to 87% permeance increment. The results of the parametric study shows that the highest permeance was achieved under short filtration–relaxation cycle of 5 min, high aeration rate of 1.5 L/min, and short switching period of 2.5 min, to yield the permeances of 465 ± 18, 447 ± 2, and 369 ± 9 L/(m2h bar), respectively. The high permeances lead to higher operational flux that helps to lower the membrane area as well as energy consumption. Initial estimation of the fully aerated system yields the energy input of 0.152 kWh/m3, much lower than data from the full-scale references of <0.4 kWh/m3. Further energy savings and a lower system footprint can still be achieved by applying the two-sided panel with a switching system, which will be addressed in the future.
Collapse
Affiliation(s)
- Aisyah Osman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (A.O.); (N.I.M.N.); (S.S.); (N.A.H.N.)
| | - Normi Izati Mat Nawi
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (A.O.); (N.I.M.N.); (S.S.); (N.A.H.N.)
| | - Shafirah Samsuri
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (A.O.); (N.I.M.N.); (S.S.); (N.A.H.N.)
| | - Muhammad Roil Bilad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (A.O.); (N.I.M.N.); (S.S.); (N.A.H.N.)
- Correspondence:
| | - Norazanita Shamsuddin
- Faculty of Integrated Technologies, Universiti Brunei Darussalam, Jalan Tungku Link BE1410, Brunei;
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS Institute of Information Technology, Lahore 54000, Pakistan;
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, UTM Johor Bahru 81310, Malaysia;
| | - Nik Abdul Hadi Nordin
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (A.O.); (N.I.M.N.); (S.S.); (N.A.H.N.)
| |
Collapse
|
15
|
Hybrid Membrane Distillation and Wet Scrubber for Simultaneous Recovery of Heat and Water from Flue Gas. ENTROPY 2020; 22:e22020178. [PMID: 33285953 PMCID: PMC7516596 DOI: 10.3390/e22020178] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/03/2019] [Accepted: 12/11/2019] [Indexed: 11/24/2022]
Abstract
Flue gas contains high amount of low-grade heat and water vapor that are attractive for recovery. This study assesses performance of a hybrid of water scrubber and membrane distillation (MD) to recover both heat and water from a simulated flue gas. The former help to condense the water vapor to form a hot liquid flow which later used as the feed for the MD unit. The system simultaneously recovers water and heat through the MD permeate. Results show that the system performance is dictated by the MD performance since most heat and water can be recovered by the scrubber unit. The scrubber achieved nearly complete water and heat recovery because the flue gas flows were supersaturated with steam condensed in the water scrubber unit. The recovered water and heat in the scrubber contains in the hot liquid used as the feed for the MD unit. The MD performance is affected by both the temperature and the flow rate of the flue gas. The MD fluxes increases at higher flue gas temperatures and higher flow rates because of higher enthalpy of the flue gas inputs. The maximum obtained water and heat fluxes of 12 kg m−2 h−1 and 2505 kJm−2 h−1 respectively, obtained at flue gas temperature of 99 °C and at flow rate of 5.56 L min−1. The MD flux was also found stable over the testing period at this optimum condition. Further study on assessing a more realistic flue gas composition is required to capture complexity of the process, particularly to address the impacts of particulates and acid gases.
Collapse
|
16
|
Chlorella vulgaris broth harvesting via standalone forward osmosis using seawater draw solution. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100394] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Ray SS, Lee HK, Kwon YN. Review on Blueprint of Designing Anti-Wetting Polymeric Membrane Surfaces for Enhanced Membrane Distillation Performance. Polymers (Basel) 2019; 12:E23. [PMID: 31877628 PMCID: PMC7023606 DOI: 10.3390/polym12010023] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/06/2019] [Accepted: 12/07/2019] [Indexed: 12/14/2022] Open
Abstract
Recently, membrane distillation (MD) has emerged as a versatile technology for treating saline water and industrial wastewater. However, the long-term use of MD wets the polymeric membrane and prevents the membrane from working as a semi-permeable barrier. Currently, the concept of antiwetting interfaces has been utilized for reducing the wetting issue of MD. This review paper discusses the fundamentals and roles of surface energy and hierarchical structures on both the hydrophobic characteristics and wetting tolerance of MD membranes. Designing stable antiwetting interfaces with their basic working principle is illustrated with high scientific discussions. The capability of antiwetting surfaces in terms of their self-cleaning properties has also been demonstrated. This comprehensive review paper can be utilized as the fundamental basis for developing antiwetting surfaces to minimize fouling, as well as the wetting issue in the MD process.
Collapse
Affiliation(s)
- Saikat Sinha Ray
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Hyung-Kae Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Young-Nam Kwon
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
18
|
Abd Halim NS, Wirzal MDH, Bilad MR, Md Nordin NAH, Adi Putra Z, Sambudi NS, Mohd Yusoff AR. Improving Performance of Electrospun Nylon 6,6 Nanofiber Membrane for Produced Water Filtration via Solvent Vapor Treatment. Polymers (Basel) 2019; 11:polym11122117. [PMID: 31861059 PMCID: PMC6960844 DOI: 10.3390/polym11122117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/22/2019] [Accepted: 09/29/2019] [Indexed: 02/02/2023] Open
Abstract
Electrospun nanofiber membrane (NFM) has a high potential to be applied as a filter for produced water treatment due to its highly porous structure and great permeability. However, it faces fouling issues and has low mechanical properties, which reduces the performance and lifespan of the membrane. NFM has a low integrity and the fine mat easily detaches from the sheet. In this study, nylon 6,6 was selected as the polymer since it offers great hydrophilicity. In order to increase mechanical strength and separation performance of NFM, solvent vapor treatment was implemented where the vapor induces the fusion of fibers. The fabricated nylon 6,6 NFMs were treated with different exposure times of formic acid vapor. Results show that solvent vapor treatment helps to induce the fusion of overlapping fibers. The optimum exposure time for solvent vapor is 5 h to offer full retention of dispersed oil (100% of oil rejection), has 62% higher in tensile strength (1950 MPa) compared to untreated nylon 6,6 NFM (738 MPa), and has the final permeability closest to the untreated nylon 6,6 NFM (733 L/m2.h.bar). It also took more time to get fouled (220 min) compared to untreated NFM (160 min).
Collapse
Affiliation(s)
- Nur Syakinah Abd Halim
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (N.S.A.H.); (M.R.B.); (N.A.H.M.N.); (Z.A.P.); (N.S.S.)
| | - Mohd Dzul Hakim Wirzal
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (N.S.A.H.); (M.R.B.); (N.A.H.M.N.); (Z.A.P.); (N.S.S.)
- Correspondence:
| | - Muhammad Roil Bilad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (N.S.A.H.); (M.R.B.); (N.A.H.M.N.); (Z.A.P.); (N.S.S.)
| | - Nik Abdul Hadi Md Nordin
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (N.S.A.H.); (M.R.B.); (N.A.H.M.N.); (Z.A.P.); (N.S.S.)
| | - Zulfan Adi Putra
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (N.S.A.H.); (M.R.B.); (N.A.H.M.N.); (Z.A.P.); (N.S.S.)
| | - Nonni Soraya Sambudi
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak 32610, Malaysia; (N.S.A.H.); (M.R.B.); (N.A.H.M.N.); (Z.A.P.); (N.S.S.)
| | | |
Collapse
|
19
|
Improving Water Permeability of Hydrophilic PVDF Membrane Prepared via Blending with Organic and Inorganic Additives for Humic Acid Separation. Molecules 2019; 24:molecules24224099. [PMID: 31766222 PMCID: PMC6891752 DOI: 10.3390/molecules24224099] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 11/16/2022] Open
Abstract
The removal of impurities from water or wastewater by the membrane filtration process has become more reliable due to good hydraulic performance and high permeate quality. The filterability of the membrane can be improved by having a material with a specific pore structure and good hydrophilic properties. This work aims at preparing a polyvinylidene fluoride (PVDF) membrane incorporated with phospholipid in the form of a 2-methacryloyloxyethyl phosphorylcholine, polymeric additive in the form of polyvinylpyrrolidone, and its combination with inorganic nanosilica from a renewable source derived from bagasse. The resulting membrane morphologies were analyzed by using scanning electron microscopy. Furthermore, atomic force microscopy was performed to analyze the membrane surface roughness. The chemical compositions of the resulting membranes were identified using Fourier transform infrared. A lab-scale cross-flow filtration system module was used to evaluate the membrane's hydraulic and separation performance by the filtration of humic acid (HA) solution as the model contaminant. Results showed that the additives improved the membrane surface hydrophilicity. All modified membranes also showed up to five times higher water permeability than the pristine PVDF, thanks to the improved structure. Additionally, all membrane samples showed HA rejections of 75-90%.
Collapse
|
20
|
Barambu NU, Bilad MR, Wibisono Y, Jaafar J, Mahlia TMI, Khan AL. Membrane Surface Patterning as a Fouling Mitigation Strategy in Liquid Filtration: A Review. Polymers (Basel) 2019; 11:polym11101687. [PMID: 31618963 PMCID: PMC6835855 DOI: 10.3390/polym11101687] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/22/2019] [Accepted: 09/26/2019] [Indexed: 11/16/2022] Open
Abstract
Membrane fouling is seen as the main culprit that hinders the widespread of membrane application in liquid-based filtration. Therefore, fouling management is key for the successful implementation of membrane processes, and it is done across all magnitudes. For optimum operation, membrane developments and surface modifications have largely been reported, including membrane surface patterning. Membrane surface patterning involves structural modification of the membrane surface to induce secondary flow due to eddies, which mitigate foulant agglomeration and increase the effective surface area for improved permeance and antifouling properties. This paper reviews surface patterning approaches used for fouling mitigation in water and wastewater treatments. The focus is given on the pattern formation methods and their effect on overall process performances.
Collapse
Affiliation(s)
- Nafiu Umar Barambu
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Perak 32610, Malaysia.
| | - Muhammad Roil Bilad
- Chemical Engineering Department, Universiti Teknologi PETRONAS, Perak 32610, Malaysia.
| | - Yusuf Wibisono
- Bioprocess Engineering Program, Faculty of Agricultural Technology, Universitas Brawijaya, Malang 65141, Indonesia.
| | - Juhana Jaafar
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia.
| | - Teuku Meurah Indra Mahlia
- School of Information, Systems and Modelling, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Asim Laeeq Khan
- Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore 54000, Pakistan.
| |
Collapse
|
21
|
Techno-Economic Assessment of Air and Water Gap Membrane Distillation for Seawater Desalination under Different Heat Source Scenarios. WATER 2019. [DOI: 10.3390/w11102117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Membrane distillation (MD) has a great deal of potential and this is currently being explored by the scientific community. However, this technology has not yet been implemented by industry, and an estimation of final product costs is key to its commercial success. In this study a techno-economic assessment of air gap MD (AGMD) and water gap MD (WGMD) for seawater desalination under different capacities and heat source scenarios was developed. The simplified cost of water (SCOW) method, which estimates investment costs, fixed and variable costs, as well as amortization factors and price influence over time was applied. In addition, experimental data from a laboratory-scale MD desalination plant were also used. The results showed water costs in the range of 1.56 to 7.53 €/m3 for WGMD and 2.38 to 9.60 €/m3 for AGMD. Specifically, the most feasible scenario was obtained for WGMD with a capacity of 1000 m3 daily using waste and solar heat. Finally, the costs obtained for MD were similar to those of conventional desalination technologies at the same scale factor. Therefore, although large-scale pilot studies and optimization of manufacturing processes are needed, MD shows very promising results that should be considered further.
Collapse
|
22
|
Mazinani S, Al-Shimmery A, Chew YMJ, Mattia D. 3D Printed Fouling-Resistant Composite Membranes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26373-26383. [PMID: 31294955 DOI: 10.1021/acsami.9b07764] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fouling remains a long-standing unsolved problem that hinders the widespread use of membrane applications in industry. This article reports the use of numerical simulations coupled with extensive material synthesis and characterization to fabricate fouling-resistant 3D printed composite membranes. The membranes consist of a thin polyethersulfone selective layer deposited onto a 3D printed flat and double sinusoidal (wavy) support. Fouling and cleaning of the composite membranes were tested by using bovine serum albumin solution in a cross-flow ultrafiltration setup. The transmembrane pressure was regulated at 1 bar and the cross-flow Reynolds number (Re) varied between 400 and 1000. In comparison to the flat membrane, the wavy membrane showed superior performance in terms of pure water permeance (PWP) (10% higher) and permeance recovery ratio (87% vs 53%) after the first filtration cycle at Re = 1000. Prolong testing showed that the wavy membrane could retain approximately 87% of its initial PWP after 10 complete filtration cycles. This impressive fouling-resistant behavior is attributed to the localized fluid turbulence induced by the 3D printed wavy structure. These results show that not only the lifetime of membrane operations could be favorably extended but also the operational costs and environmental damage of membrane-based processes could also be significantly reduced.
Collapse
Affiliation(s)
- Saeed Mazinani
- Department of Chemical Engineering, Centre for Advanced Separations Engineering , University of Bath , Claverton Down, Bath BA2 7AY , U.K
| | - Abouther Al-Shimmery
- Department of Chemical Engineering, Centre for Advanced Separations Engineering , University of Bath , Claverton Down, Bath BA2 7AY , U.K
| | - Y M John Chew
- Department of Chemical Engineering, Centre for Advanced Separations Engineering , University of Bath , Claverton Down, Bath BA2 7AY , U.K
| | - Davide Mattia
- Department of Chemical Engineering, Centre for Advanced Separations Engineering , University of Bath , Claverton Down, Bath BA2 7AY , U.K
| |
Collapse
|