1
|
Development and Characterization of Polylactide Blends with Improved Toughness by Reactive Extrusion with Lactic Acid Oligomers. Polymers (Basel) 2022; 14:polym14091874. [PMID: 35567043 PMCID: PMC9104828 DOI: 10.3390/polym14091874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023] Open
Abstract
In this work, we report the development and characterization of polylactide (PLA) blends with improved toughness by the addition of 10 wt.% lactic acid oligomers (OLA) and assess the feasibility of reactive extrusion (REX) and injection moulding to obtain high impact resistant injection moulded parts. To improve PLA/OLA interactions, two approaches are carried out. On the one hand, reactive extrusion of PLA/OLA with different dicumyl peroxide (DCP) concentrations is evaluated and, on the other hand, the effect of maleinized linseed oil (MLO) is studied. The effect of DCP and MLO content used in the reactive extrusion process is evaluated in terms of mechanical, thermal, dynamic mechanical, wetting and colour properties, as well as the morphology of the obtained materials. The impact strength of neat PLA (39.3 kJ/m2) was slightly improved up to 42.4 kJ/m2 with 10 wt.% OLA. Nevertheless, reactive extrusion with 0.3 phr DCP (parts by weight of DCP per 100 parts by weight of PLA–OLA base blend 90:10) led to a noticeable higher impact strength of 51.7 kJ/m2, while the reactive extrusion with 6 phr MLO gave an even higher impact strength of 59.5 kJ/m2, thus giving evidence of the feasibility of these two approaches to overcome the intrinsic brittleness of PLA. Therefore, despite MLO being able to provide the highest impact strength, reactive extrusion with DCP led to high transparency, which could be an interesting feature in food packaging, for example. In any case, these two approaches represent environmentally friendly strategies to improve PLA toughness.
Collapse
|
2
|
Zhang Y, Liu C, Wu M, Li Z, Li B. Impact of the Incorporation of Nano-Sized Cellulose Formate on the End Quality of Polylactic Acid Composite Film. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 12:nano12010001. [PMID: 35009952 PMCID: PMC8746450 DOI: 10.3390/nano12010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 05/27/2023]
Abstract
Polylactic acid (PLA) films with good sustainable and biodegradable properties have been increasingly explored recently, while the poor mechanical property of PLA limits its further application. Herein, three kinds of nano-sized cellulose formate (NCF: cellulose nanofibril (CNF), cellulose nanocrystal (CNC), and regenerated cellulose formate (CF)) with different properties were fabricated via a one-step formic acid (FA) hydrolysis of tobacco stalk, and the influence of the properties of NCF with different morphologies, crystallinity index (CrI), and degree of substitution (DS) on the end quality of PLA composite film was systematically compared. Results showed that the PLA/CNC film showed the highest increase (106%) of tensile strength compared to the CNF- and CF-based films, which was induced by the rod-like CNC with higher CrI. PLA/CF film showed the largest increase (50%) of elongation at the break and more even surface, which was due to the stronger interfacial interaction between PLA and the CF with higher DS. Moreover, the degradation property of PLA/CNF film was better than that of other composite films. This fundamental study was very beneficial for the development of high-quality, sustainable packaging as an alternative to petroleum-based products.
Collapse
Affiliation(s)
- Yidong Zhang
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.Z.); (C.L.); (M.W.)
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266011, China;
| | - Chao Liu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.Z.); (C.L.); (M.W.)
| | - Meiyan Wu
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.Z.); (C.L.); (M.W.)
| | - Zhenqiu Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266011, China;
| | - Bin Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (Y.Z.); (C.L.); (M.W.)
| |
Collapse
|
3
|
Fernández MJ, Fernández MD. Effect of Organic Modifier and Clay Content on Non-Isothermal Cold Crystallization and Melting Behavior of Polylactide/Organovermiculite Nanocomposites. Polymers (Basel) 2020; 12:polym12020364. [PMID: 32046008 PMCID: PMC7077447 DOI: 10.3390/polym12020364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/28/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022] Open
Abstract
In clay/polymer nanocomposites, the crystallization behavior and kinetics of the polymer can be affected by the presence of clay, its content and the degree of miscibility between the clay and the polymer matrix. The effect of two different organomodified vermiculites on the non-isothermal cold crystallization and melting behavior of polylactide (PLA) was studied by differential scanning calorimetry (DSC). In the presence of vermiculites, the cold crystallization of PLA occurred earlier, particularly for the highest content of the most miscible organovermiculite with PLA. The cold crystallinity of PLA decreased at low heating rates, notably at high organoclay loadings, and increased at high heating rates, especially at low vermiculite contents. According to the crystallization half-time, crystallization rate coefficient (CRC), and crystallization rate parameter (CRP) approaches, the cold crystallization rate of PLA increased by incorporating vermiculites, with the effect being most noteworthy for the vermiculite showing better compatibility. The Mo model was successful in describing the non-isothermal cold crystallization kinetics of the PLA/vermiculite composites. The melting behavior was affected by the heating rate and the type and content of clay. The nucleating effect of the most compatible clay resulted in the less perfect crystallites. The activation energy was evaluated using the Kissinger and Takhor methods.
Collapse
|
4
|
Isothermal cold crystallization kinetics and properties of thermoformed poly(lactic acid) composites: effects of talc, calcium carbonate, cassava starch and silane coupling agents. IRANIAN POLYMER JOURNAL 2020. [DOI: 10.1007/s13726-019-00778-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
5
|
Lascano D, Moraga G, Ivorra-Martinez J, Rojas-Lema S, Torres-Giner S, Balart R, Boronat T, Quiles-Carrillo L. Development of Injection-Molded Polylactide Pieces with High Toughness by the Addition of Lactic Acid Oligomer and Characterization of Their Shape Memory Behavior. Polymers (Basel) 2019; 11:E2099. [PMID: 31847359 PMCID: PMC6960981 DOI: 10.3390/polym11122099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 01/08/2023] Open
Abstract
This work reports the effect of the addition of an oligomer of lactic acid (OLA), in the 5-20 wt% range, on the processing and properties of polylactide (PLA) pieces prepared by injection molding. The obtained results suggested that the here-tested OLA mainly performs as an impact modifier for PLA, showing a percentage increase in the impact strength of approximately 171% for the injection-molded pieces containing 15 wt% OLA. A slight plasticization was observed by the decrease of the glass transition temperature (Tg) of PLA of up to 12.5 °C. The OLA addition also promoted a reduction of the cold crystallization temperature (Tcc) of more than 10 °C due to an increased motion of the biopolymer chains and the potential nucleating effect of the short oligomer chains. Moreover, the shape memory behavior of the PLA samples was characterized by flexural tests with different deformation angles, that is, 15°, 30°, 60°, and 90°. The obtained results confirmed the extraordinary effect of OLA on the shape memory recovery (Rr) of PLA, which increased linearly as the OLA loading increased. In particular, the OLA-containing PLA samples were able to successfully recover over 95% of their original shape for low deformation angles, while they still reached nearly 70% of recovery for the highest angles. Therefore, the present OLA can be successfully used as a novel additive to improve the toughness and shape memory behavior of compostable packaging articles based on PLA in the new frame of the Circular Economy.
Collapse
Affiliation(s)
- Diego Lascano
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (D.L.); (G.M.); (J.I.-M.); (S.R.-L.); (R.B.); (T.B.); (L.Q.-C.)
- Escuela Politécnica Nacional, 17-01-2759 Quito, Ecuador
| | - Giovanni Moraga
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (D.L.); (G.M.); (J.I.-M.); (S.R.-L.); (R.B.); (T.B.); (L.Q.-C.)
| | - Juan Ivorra-Martinez
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (D.L.); (G.M.); (J.I.-M.); (S.R.-L.); (R.B.); (T.B.); (L.Q.-C.)
| | - Sandra Rojas-Lema
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (D.L.); (G.M.); (J.I.-M.); (S.R.-L.); (R.B.); (T.B.); (L.Q.-C.)
- Escuela Politécnica Nacional, 17-01-2759 Quito, Ecuador
| | - Sergio Torres-Giner
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish National Research Council (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| | - Rafael Balart
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (D.L.); (G.M.); (J.I.-M.); (S.R.-L.); (R.B.); (T.B.); (L.Q.-C.)
| | - Teodomiro Boronat
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (D.L.); (G.M.); (J.I.-M.); (S.R.-L.); (R.B.); (T.B.); (L.Q.-C.)
| | - Luis Quiles-Carrillo
- Technological Institute of Materials (ITM), Universitat Politècnica de València (UPV), Plaza Ferrándiz y Carbonell 1, 03801 Alcoy, Spain; (D.L.); (G.M.); (J.I.-M.); (S.R.-L.); (R.B.); (T.B.); (L.Q.-C.)
| |
Collapse
|