1
|
Double-Decker-Shaped Polyhedral Silsesquioxanes Reinforced Epoxy/Bismaleimide Hybrids Featuring High Thermal Stability. Polymers (Basel) 2022; 14:polym14122380. [PMID: 35745957 PMCID: PMC9229952 DOI: 10.3390/polym14122380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/05/2022] Open
Abstract
In this study, we synthesized bismaleimide into a functionalized double-decker silsesquioxane (DDSQ) cage. This was achieved by hydrosilylation of DDSQ with nadic anhydride (ND), reacting it with excess p-phenylenediamine to obtain DDSQ-ND-NH2, and treating with maleic anhydride (MA), which finally created a DDSQ-BMI cage structure. We observed that the thermal decomposition temperature (Td) and char yield were both increased upon increasing the thermal polymerization temperature, and that these two values were both significantly higher than pure BMI without the DDSQ cage structure since the inorganic DDSQ nanoparticle could strongly enhance the thermal stability based on the nano-reinforcement effect. Based on FTIR, TGA, and DMA analyses, it was found that blending epoxy resin with the DDSQ-BMI cage to form epoxy/DDSQ-BMI hybrids could also enhance the thermal and mechanical properties of epoxy resin due to the organic/inorganic network formation created by the ring-opening polymerization of the epoxy group and the addition polymerization of the BMI group due to the combination of the inorganic DDSQ cage structure and hydrogen bonding effect. The epoxy/DDSQ-BMI = 1/1 hybrid system displayed high Tg value (188 °C), Td value (397 °C), and char yield (40.4 wt%), which was much higher than that of the typical DGEBA type epoxy resin with various organic curing agents.
Collapse
|
2
|
Huang X, Song G, Shi J, Ren J, Guo R, Li C, Chen G, Li Q, Zhou Z. Thermal stability, mechanical, and optical properties of novel RTV silicone rubbers using octa(dimethylethoxysiloxy)-POSS as a cross-linker. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Octa(dimethylethoxysiloxy) POSS (ODES) was synthesized successfully and used as the novel curing agent to prepare RTV silicone rubber (SROD) with outstanding mechanical properties and thermal stability. Compared with the silicone rubber cross-linked by tetraethoxysilane (SRTE), the novel RTV silicone rubber using octa(dimethylethoxysiloxy) POSS as a cross-linker had better mechanical, thermal, and optical properties. The highest tensile strength of SROD reached 1.26 MPa, which is three times that of SRTE. Besides, the decomposition temperature of 10% weight loss reached 507.7°C, exceeding that of SRTE by nearly 150°C. In addition, it was remarkable that due to the good compatibility of ODES with the silicone rubber matrix, the series of SROD showed good transmittance, greater than 87%. The thermal decomposition process of SROD was investigated by TGA coupled with real-time FTIR, and the results revealed the rigid structure and large steric hindrance of ODES that efficiently blocked the “backbiting” of the polysiloxy chains and delayed the end-induced ring decomposition, and consequently, improved the thermal stability of SROD significantly.
Collapse
Affiliation(s)
- Xing Huang
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology , Beijing 100029 , China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029 , China
- College of Material Science and Engineering, Beijing University of Chemical Technology , Beijing 100029 , China
| | - Guomin Song
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology , Beijing 100029 , China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029 , China
- College of Material Science and Engineering, Beijing University of Chemical Technology , Beijing 100029 , China
| | - Jianjun Shi
- Aerospace Research Institute of Materials and Processing Technology, Science and Technology on Advanced Functional Composites Technology , Beijing 100029 , China
| | - Jiafei Ren
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology , Beijing 100029 , China
- College of Material Science and Engineering, Beijing University of Chemical Technology , Beijing 100029 , China
| | - Ruilu Guo
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology , Beijing 100029 , China
- College of Material Science and Engineering, Beijing University of Chemical Technology , Beijing 100029 , China
| | - Chunyuan Li
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology , Beijing 100029 , China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029 , China
- College of Material Science and Engineering, Beijing University of Chemical Technology , Beijing 100029 , China
| | - Guangxin Chen
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology , Beijing 100029 , China
- College of Material Science and Engineering, Beijing University of Chemical Technology , Beijing 100029 , China
| | - Qifang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029 , China
- College of Material Science and Engineering, Beijing University of Chemical Technology , Beijing 100029 , China
| | - Zheng Zhou
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology , Beijing 100029 , China
- College of Material Science and Engineering, Beijing University of Chemical Technology , Beijing 100029 , China
| |
Collapse
|
3
|
Li A, Huang B, Wu H, Zhang W, Zhou R, Ding Y. Effects of sample thickness on the combustion and smoke characteristics of chlorinated polyvinyl chloride. J Appl Polym Sci 2022. [DOI: 10.1002/app.51541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ang Li
- College of Power Engineering Naval University of Engineering Wuhan China
| | - Biqing Huang
- Faculty of Engineering China University of Geosciences Wuhan China
| | - Hongmei Wu
- 13 Department China Ship Development and Design Center Wuhan China
| | - Wenlong Zhang
- Faculty of Engineering China University of Geosciences Wuhan China
| | - Ru Zhou
- Jiangsu Key Laboratory of Urban and Industrial Safety College of Safety Science and Engineering, Nanjing Tech University Nanjing China
| | - Yanming Ding
- Faculty of Engineering China University of Geosciences Wuhan China
| |
Collapse
|
4
|
Multifunctional Polyhedral Oligomeric Silsesquioxane (POSS) Based Hybrid Porous Materials for CO 2 Uptake and Iodine Adsorption. Polymers (Basel) 2021; 13:polym13020221. [PMID: 33435232 PMCID: PMC7826546 DOI: 10.3390/polym13020221] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/27/2023] Open
Abstract
In this study, two different types of hybrid porous organic polymers (POPs), polyhedral oligomeric silsesquioxane tetraphenylpyrazine (POSS-TPP) and tetraphenylethene (POSS-TPE), were successfully synthesized through the Friedel-Crafts polymerization of tetraphenylpyrazine (TPP) and tetraphenylethene (TPE), respectively, with octavinylsilsesquioxane (OVS) as node building blocks, in the presence of anhydrous FeCl3 as a catalyst and 1,2-dichloroethane at 60 °C. Based on N2 adsorption and thermogravimetric analyses, the resulting hybrid porous materials displayed high surface areas (270 m2/g for POSS-TPP and 741 m2/g for POSS-TPE) and outstanding thermal stabilities. Furthermore, as-prepared POSS-TPP exhibited a high carbon dioxide capacity (1.63 mmol/g at 298 K and 2.88 mmol/g at 273 K) with an excellent high adsorption capacity for iodine, reaching up to 363 mg/g, compared with the POSS-TPE (309 mg/g).
Collapse
|
5
|
Wen N, Jiang B, Wang X, Shang Z, Jiang D, Zhang L, Sun C, Wu Z, Yan H, Liu C, Guo Z. Overview of Polyvinyl Alcohol Nanocomposite Hydrogels for Electro‐Skin, Actuator, Supercapacitor and Fuel Cell. CHEM REC 2020; 20:773-792. [DOI: 10.1002/tcr.202000001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Nan Wen
- College of Chemistry, Chemical Engineering and Resource UtilizationNortheast Forestry University Harbin 150040, PR China
| | - Bojun Jiang
- College of Chemistry, Chemical Engineering and Resource UtilizationNortheast Forestry University Harbin 150040, PR China
| | - Xiaojing Wang
- School of Materials Science and EngineeringJiangsu University of Science and Technology Zhenjiang 212003 China
| | - Zhifu Shang
- College of Chemistry, Chemical Engineering and Resource UtilizationNortheast Forestry University Harbin 150040, PR China
| | - Dawei Jiang
- College of Chemistry, Chemical Engineering and Resource UtilizationNortheast Forestry University Harbin 150040, PR China
- Post-doctoral Mobile Research Station of Forestry EngineeringNortheast Forestry University Harbin 150040 China
| | - Lu Zhang
- College of Chemistry, Chemical Engineering and Resource UtilizationNortheast Forestry University Harbin 150040, PR China
| | - Caiying Sun
- College of Chemistry, Chemical Engineering and Resource UtilizationNortheast Forestry University Harbin 150040, PR China
| | - Zijian Wu
- Key Laboratory of Engineering Dielectrics and Its Application, Ministry of Education, HarbinUniversity of Science and Technology Harbin 150040 China
| | - Hui Yan
- School of Mechatronics EngineeringHarbin Institute of Technology Harbin 150001 China
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold (Zhengzhou University), Ministry of Education, National Engineering Research Center for Advanced Polymer Processing TechnologyZhengzhou University, Zhengzhou Henan 450002 China
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical EngineeringUniversity of Tennessee Knoxville TN 37996 USA
| |
Collapse
|
6
|
Chen WC, Tsao YH, Wang CF, Huang CF, Dai L, Chen T, Kuo SW. Main Chain-Type Block Copolymers through Atom Transfer Radical Polymerization from Double-Decker-Shaped Polyhedral Oligomeric Silsesquioxane Hybrids. Polymers (Basel) 2020; 12:E465. [PMID: 32079321 PMCID: PMC7077682 DOI: 10.3390/polym12020465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 01/27/2023] Open
Abstract
In this study, we synthesized two main chain-type block copolymers featuring hydrogen bond donor and acceptor segments through atom transfer radical polymerization (ATRP) using a bifunctionalized polyhedral oligomeric silsesquioxane (POSS) nanoparticle as the initiator. Hydrosilylation of vinylbenzyl chloride at the two corners of a double-decker silsesquioxane (DDSQ) provided the bifunctionalized benzyl chloride initiator VBC-DDSQ-VBC, which we applied as a platform to prepare a main chain-type polystyrene homopolymer (PS-DDSQ-PS), the diblock copolymer poly(styrene-b-4-vinylpyridine) (P4VP-b-PS-DDSQ-PS-b-P4VP), and the diblock copolymer poly(styrene-b-tert-butoxystyrene) (PtBuOS-b-PS-DDSQ-PS-b-PtBuOS) through sequential ATRP. Selective hydrolysis of the tert-butoxyl units of PtBuOS-b-PS-DDSQ-PS-b-PtBuOS yielded the strongly hydrogen bonding diblock copolymer poly (styrene-b-vinylphenol) (PVPh-b-PS-DDSQ-PS-b-PVPh). We used Fourier transfer infrared spectroscopy, nuclear magnetic resonance spectroscopy, size exclusion chromatography, differential scanning calorimetry, mass-analyzed laser desorption ionization mass spectrometry, and transmission electron microscopy to investigate the chemical structures, thermal behavior, and self-assembled nanostructures formed by these main chain-type block copolymers based on DDSQ.
Collapse
Affiliation(s)
- Wei-Cheng Chen
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (W.-C.C.); (Y.-H.T.)
| | - Yu-Hsuan Tsao
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (W.-C.C.); (Y.-H.T.)
| | - Chih-Feng Wang
- Advanced Membrane Materials Research Center, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan;
| | - Chih-Feng Huang
- Department of Chemical Engineering, National Chung Hsing University, 145 Xingda Road, Taichung 402-27, Taiwan;
| | - Lizong Dai
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen 361005, China;
| | - Tao Chen
- Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, Zhongguan West Road 1219, Ningbo 315201, China;
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan; (W.-C.C.); (Y.-H.T.)
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
7
|
Thermal Decomposition Mechanism and Kinetics Study of Plastic Waste Chlorinated Polyvinyl Chloride. Polymers (Basel) 2019; 11:polym11122080. [PMID: 31842466 PMCID: PMC6960712 DOI: 10.3390/polym11122080] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022] Open
Abstract
Chlorinated polyvinyl chloride (CPVC), as a new type of engineering plastic waste, has been used widely due to its good heat resistance, mechanical properties and corrosion resistance, while it has become an important part of solid waste. The pyrolysis behaviors of CPVC waste were analyzed based on thermogravimetric experiments to explore its reaction mechanism. Compared with polyvinyl chloride (PVC) pyrolysis, CPVC pyrolysis mechanism was divided into two stages and speculated to be dominated by the dehydrochlorination and cyclization/aromatization processes. A common model-free method, Flynn-Wall-Ozawa method, was applied to estimate the activation energy values at different conversion rates. Meanwhile, a typical model-fitting method, Coats-Redfern method, was used to predict the possible reaction model by the comparison of activation energy obtained from model-free method, thereby the first order reaction-order model and fourth order reaction-order model were established corresponding to these two stages. Eventually, based on the initial kinetic parameter values computed by model-free method and reaction model established by model-fitting method, kinetic parameters were optimized by Shuffled Complex Evolution algorithm and further applied to predict the CPVC pyrolysis behaviors during the whole temperature range.
Collapse
|