1
|
Zhang Z, Li J, Yang B, Ma M, Ding X, Shi H, Ma P, Song D, Zhang Z. Near-infrared fluorescent probe for ultrasensitive detection of organophosphorus pesticides and visualization of their interaction with butyrylcholinesterase in living cells. Talanta 2024; 279:126587. [PMID: 39032455 DOI: 10.1016/j.talanta.2024.126587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/19/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The toxicity of organophosphorus pesticides (OPs) can catastrophically cause liver cell damage and inhibit the catalytic activity of cholinesterase. We designed and synthesized a near-infrared fluorescent probe HP-LZB with large Stokes shift which can specifically identify and detect butyrylcholinesterase (BChE) and visually explore the interaction between OPs and endogenous BChE in living cells. Fluorescence was turned on when HP-LZB was hydrolyzed into HP-LZ in the presence of BChE, and OPs could inhibit BChE's activity resulting in a decrease of fluorescence. Six OPs including three oxon pesticides (paraoxon, chlorpyrifos oxon and diazoxon) and their corresponding thion pesticides (parathion, chlorpyrifos and diazinon) were investigated. Both in vitro and cell experiments indicated that only oxon pesticides could inhibit BChE's activity. The limits of detection (LODs) of paraoxon, chlorpyrifos oxon and diazoxon were as low as 0.295, 0.007 and 0.011 ng mL-1 respectively and the recovery of OPs residue in vegetable samples was satisfactory. Thion pesticides themselves could hardly inhibit the activity of BChE and are only toxic when they are converted to their corresponding oxon form in the metabolic process. However, in this work, thion pesticides were found not be oxidized into their oxon forms in living HepG2 cells due to the lack of cytochrome P450 in hepatoma HepG2 cell lines. Therefore, this probe has great application potential in effectively monitoring OPs in real plant samples and visually exploring the interaction between OPs and BChE in living cells.
Collapse
Affiliation(s)
- Zhimin Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Jingkang Li
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Bin Yang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Mo Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China; School of Pharmacy, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Xiangdong Ding
- China-Japan Union Hospital, Jilin University, Xiantai Street 126, Changchun, 130012, China
| | - Hui Shi
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Pinyi Ma
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Daqian Song
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China
| | - Ziwei Zhang
- College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Qianjin Street 2699, Changchun, 130012, China.
| |
Collapse
|
2
|
Tian J, An M, Zhao X, Wang Y, Hasan M. Advances in Fluorescent Sensing Carbon Dots: An Account of Food Analysis. ACS OMEGA 2023; 8:9031-9039. [PMID: 36936334 PMCID: PMC10018703 DOI: 10.1021/acsomega.2c07986] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Illuminating the use of nanomaterials, carbon quantum dots (CQDs) have transfigured the food safety arena because of their bright luminescence, optical properties, low toxicity, and enhanced biocompatibility. Therefore, fluorescent resonance energy transfer, photoinduced electron transfer, and an internal filtering effect mechanism allow precise detection of food additives, heavy metal ions, pathogenic bacteria, veterinary drug residues, and food nutrients. In this review, we describe the primal mechanism of CQD-based fluorescence sensors for food safety inspection. This is an abridged description of the nanodesign and future perspectives of more advanced CQD-based sensors for food safety analysis.
Collapse
Affiliation(s)
- Jixiang Tian
- Institute
of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Minmei An
- Taian
Traditional Chinese Medicine Hospital, Taian 271000, China
| | - Xiaoang Zhao
- Institute
of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yun Wang
- Institute
of Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Murtaza Hasan
- Faculty
of Biological and Chemical Sciences, Department of Biotechnology, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
3
|
Rasheed T. Carbon dots as robust class of sustainable and environment friendlier nano/optical sensors for pesticide recognition from wastewater. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
4
|
Shen D, Yan Y, Hu X, Zhong Y, Li Z, Guo Y, Xie L, Yuan D. Deep-Eutectic-Solvent-Based Mesoporous Molecularly Imprinted Polymers for Purification of Gallic Acid from Camellia spp. Fruit Shells. Int J Mol Sci 2022; 23:ijms232113089. [PMID: 36361874 PMCID: PMC9658731 DOI: 10.3390/ijms232113089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/12/2022] [Accepted: 10/26/2022] [Indexed: 11/25/2022] Open
Abstract
To produce antioxidant substances from agricultural waste Camellia spp. fruit shells before their further utilization, gallic acid from five kinds of Camellia spp. fruit shells was separated on specific recognition by deep eutectic solvent molecularly imprinted polymers (DES@MIPs), which were prepared by bulk polymerization using gallic acid as the template and deep eutectic solvents (α-methylacrylic acid and choline chloride) as functional monomers. The optimized DES@MIPs were characterized by scanning electron microscopy, particle size analysis, nitrogen sorption porosimetry, elemental analysis, Fourier transform infrared spectroscopy, and thermal gravimetric analysis. The adsorptive behavior of gallic acid on DES@MIPs was also investigated. The results indicated that DES@MIPs were successfully prepared as mesoporous materials with average pore diameter of 9.65 nm and total pore volume of 0.315 cm3 g−1, and the adsorption behavior was multilayer adsorption and pseudo-second-order kinetics with the saturation adsorptive capacity of gallic acid reaching 0.7110 mmol g−1. Although the content of gallic acid in five fruit shells was quite different, the purification recovery of gallic acid was high, ranging from 87.85–96.75% with a purity over 80%. Thus, the purification of gallic acid from Camellia spp. fruit shells could be realized feasibly using DES@MIPs with favorable economic and environmental benefits.
Collapse
Affiliation(s)
- Dianling Shen
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yu Yan
- College of Material Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaopeng Hu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yujun Zhong
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiyang Li
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yaping Guo
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lianwu Xie
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
- College of Material Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: (L.X.); (D.Y.); Tel.: +86-731-85623819 (L.X.); +86-731-85623450 (D.Y.)
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
- Correspondence: (L.X.); (D.Y.); Tel.: +86-731-85623819 (L.X.); +86-731-85623450 (D.Y.)
| |
Collapse
|
5
|
Wang Y, El-Aty AMA, Chen G, Jia H, Cui X, Xu L, Cao Z, She Y, Jin F, Zhang Y, Hacimuftuoglu A, Lamu S, Wang J, Zheng L, Jin M, Hammock BD. A competitive immunoassay for detecting triazophos based on fluorescent catalytic hairpin self-assembly. Mikrochim Acta 2022; 189:114. [PMID: 35190860 PMCID: PMC10111248 DOI: 10.1007/s00604-022-05217-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/01/2022] [Indexed: 11/30/2022]
Abstract
A rapid detection method is introduced for residual trace levels of triazophos in water and agricultural products using an immunoassay based on catalytic hairpin self-assembly (CHA). The gold nanoparticle (AuNPs) surface was modified with triazophos antibody and sulfhydryl bio-barcode, and an immune competition reaction system was established between triazophos and its ovalbumin-hapten (OVA-hapten). The bio-barcode served as a catalyst to continuously induce the CHA reaction to achieve the dual signal amplification. The method does not rely on the participation of enzymes, and the addition of fluorescent materials in the last step avoids interfering factors, such as a fluorescence burst. The emitted fluorescence was detected at 489/521 nm excitation/emission wavelengths. The detection range of the developed method was 0.01-50 ng/mL for triazophos, and the limit of detection (LOD) was 0.0048 ng/mL. The developed method correlates well with the results obtained by LC-MS/MS, with satisfactory recovery and sensitivity. In sum, the designed method is reliable and provides a new approach to detect pesticide residues rapidly and quantitatively.
Collapse
Affiliation(s)
- Yuanshang Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing, 100081, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Ge Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing, 100081, China
| | - Huiyan Jia
- Ningbo Academy of Agricultural Sciences, Ningbo, 315040, China
| | - Xueyan Cui
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing, 100081, China
| | - Lingyuan Xu
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing, 100081, China
| | - Zhen Cao
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing, 100081, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing, 100081, China
| | - Fen Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing, 100081, China
| | - Yudan Zhang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing, 100081, China
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey
| | - Sangqiong Lamu
- Inspection and Testing Center of Agricultural and Livestock Products of Tibet, Lhasa, 850000, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing, 100081, China
| | - LuFei Zheng
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing, 100081, China
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Key Laboratory of Agro-Product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, China. .,Key Laboratory of Agro-Product Quality and Safety, Ministry of Agriculture, Beijing, 100081, China. .,Department of Entomology & Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA.
| | - Bruce D Hammock
- Department of Entomology & Nematology, UC Davis Comprehensive Cancer Center, University of California, Davis, CA, 95616, USA
| |
Collapse
|
6
|
Wang X, Yang Y, Yin Y, Zeng N, Dong Y, Liu J, Wang L, Yang Z, Yang C. High-Throughput Aptamer Microarrays for Fluorescent Detection of Multiple Organophosphorus Pesticides in Food. Anal Chem 2022; 94:3173-3179. [PMID: 35133802 DOI: 10.1021/acs.analchem.1c04650] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel high-throughput aptamer microarray fluorescent method based on thioflavin T (ThT) was established for the sensitive detection of phoxim, parathion, fensulfothion, and isocarbophos. In this work, the aptamers in binding buffer tended to have the antiparallel G-quadruplex structure, which can bind ThT and release its potential fluorescence signal. However, when the organophosphorus pesticides (OPs) were present, partial aptamers preferred to bind them, forcing the displacement of ThT from the G-quadruplex and resulting in the significant decrease in fluorescence signal. Under optimal experimental conditions (12T spacer, 300 nM aptamer, and 80 μM ThT), the OP aptamer microarray has low limits of detection of 25.4 ng/mL for phoxim, 12.0 ng/mL for parathion, 7.7 ng/mL for fensulfothion, and 9.9 ng/mL for isocarbophos. The accuracy and reliability of the method is further verified by testing the recovery rate of OPs spiked in two different complicated sample matrices (pears and radishes). It is worth mentioning that not only the developed aptamer microarray technology has low sensitivity and a broad spectrum, but it also allows for high-throughput and rapid analysis of a variety OPs, which overcomes some of the shortcomings of other OP detection methods.
Collapse
Affiliation(s)
- Xu Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring East Road, Beijing 100029, China
| | - Yan Yang
- College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring East Road, Beijing 100029, China
| | - Yingai Yin
- College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring East Road, Beijing 100029, China
| | - Ni Zeng
- College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring East Road, Beijing 100029, China
| | - Yiyang Dong
- College of Life Science and Technology, Beijing University of Chemical Technology, No.15 North Third Ring East Road, Beijing 100029, China
| | - Jiahui Liu
- College of Chemistry and Molecular Engineering, Peking University, No.5 Yiheyuan Road, Beijing 100080, China
| | - Lei Wang
- AECC Beijing Institute of Aeronautical Materials, No. 8 Hangcai Road, Beijing 100089, China
| | - Zheng Yang
- AECC Beijing Institute of Aeronautical Materials, No. 8 Hangcai Road, Beijing 100089, China
| | - Chunsheng Yang
- AECC Beijing Institute of Aeronautical Materials, No. 8 Hangcai Road, Beijing 100089, China
| |
Collapse
|
7
|
Zhang X, Liao X, Hou Y, Jia B, Fu L, Jia M, Zhou L, Lu J, Kong W. Recent advances in synthesis and modification of carbon dots for optical sensing of pesticides. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126881. [PMID: 34449329 DOI: 10.1016/j.jhazmat.2021.126881] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Serious threat from pesticide residues to the ecosystem and human health has become a global concern. Developing reliable methods for monitoring pesticides is a world-wide research hotspot. Carbon dots (CDs) with excellent photostability, low toxicity, and good biocompatibility have been regarded as the potential substitutes in fabricating various optical sensors for pesticide detection. Based on the relevant high-quality publications, this paper first summarizes the current state-of-the-art of the synthetic and modification approaches of CDs. Then, a comprehensive overview is given on the recent advances of CDs-based optical sensors for pesticides over the past five years, with a particular focus on photoluminescent, electrochemiluminescent and colorimetric sensors regarding the sensing mechanisms and design principles by integrating with various recognition elements including antibodies, aptamers, enzymes, molecularly imprinted polymers, and some nanoparticles. Novel functions and extended applications of CDs as signal indicators, catalyst, co-reactants, and electrode surface modifiers, in constructing optical sensors are specially highlighted. Beyond an assessment of the performances of the real-world application of these proposed optical sensors, the existing inadequacies and current challenges, as well as future perspectives for pesticide monitoring are discussed in detail. It is hoped to provide powerful insights for the development of novel CDs-based sensing strategies with their wide application in different fields for pesticide supervision.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Yujiao Hou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Xinjiang Agricultural Vocational Technical College, Changji 831100, China
| | - Boyu Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Lizhu Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mingxuan Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jinghua Lu
- Pharmacy College, Jinzhou Medical University, Jinzhou 121001, China
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
8
|
Li J, Zhou X, Yan Y, Shen D, Lu D, Guo Y, Xie L, Deng B. Selective Recognition of Gallic Acid Using Hollow Magnetic Molecularly Imprinted Polymers with Double Imprinting Surfaces. Polymers (Basel) 2022; 14:175. [PMID: 35012196 PMCID: PMC8747617 DOI: 10.3390/polym14010175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 02/06/2023] Open
Abstract
Gallic acid is widely used in the field of food and medicine due to its diversified bioactivities. The extraction method with higher specificity and efficiency is the key to separate and purify gallic acid from complex biological matrix. Herein, using self-made core-shell magnetic molecularly imprinted polymers (MMIP) with gallic acid as template, a hollow magnetic molecularly imprinted polymer (HMMIP) with double imprinting/adsorption surfaces was prepared by etching the mesoporous silica intermediate layer of MMIP. The characterization and adsorption research showed that the HMMIP had larger specific surface area, higher magnetic response strength and a more stable structure, and the selectivity and saturated adsorption capacity (2.815 mmol/g at 318 K) of gallic acid on HMMIP were better than those of MMIP. Thus, in addition to MMIP, the improved HMMIP had excellent separation and purification ability to selectively extract gallic acid from complex matrix with higher specificity and efficiency.
Collapse
Affiliation(s)
- Jiawei Li
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (J.L.); (X.Z.); (Y.Y.); (D.S.); (D.L.); (Y.G.)
| | - Xinji Zhou
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (J.L.); (X.Z.); (Y.Y.); (D.S.); (D.L.); (Y.G.)
| | - Yu Yan
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (J.L.); (X.Z.); (Y.Y.); (D.S.); (D.L.); (Y.G.)
| | - Dianling Shen
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (J.L.); (X.Z.); (Y.Y.); (D.S.); (D.L.); (Y.G.)
| | - Danqing Lu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (J.L.); (X.Z.); (Y.Y.); (D.S.); (D.L.); (Y.G.)
| | - Yaping Guo
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (J.L.); (X.Z.); (Y.Y.); (D.S.); (D.L.); (Y.G.)
| | - Lianwu Xie
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China; (J.L.); (X.Z.); (Y.Y.); (D.S.); (D.L.); (Y.G.)
| | - Bin Deng
- College of Chemistry Biology and Environmental Engineering, Xiangnan University, Chenzhou 423043, China
| |
Collapse
|
9
|
Peng S, Wang A, Lian Y, Zhang X, Zeng B, Chen Q, Yang H, Li J, Li L, Dan J, Liao J, Zhou S. Smartphone-based molecularly imprinted sensors for rapid detection of thiamethoxam residues and applications. PLoS One 2021; 16:e0258508. [PMID: 34748559 PMCID: PMC8575258 DOI: 10.1371/journal.pone.0258508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/28/2021] [Indexed: 11/19/2022] Open
Abstract
In order to achieve rapid detection of thiamethoxam residues in mango, cowpea and water, this study modified the screen printed carbon electrode (SPCE) to make a specific molecular imprinting sensor (Thiamethoxam-MIP/Au/rGO/SPCE) for thiamethoxam. An integrated smartphone platform was also built for thiamethoxam residue analysis. The performance of the complete system was analyzed by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The system was then applied for the rapid determination of thiamethoxam residues in water, mango and cowpea samples. The results showed that the molecular sensor showed good linearity in the range 0.5–3.0 μmol/L of thiamethoxam. The detection limit of thiamethoxam was 0.5 μmol/L. Moreover, the sensor had good reproducibility and anti-interference performance. The average recovery rates of the pesticide residues in water, mango and cowpea samples were in the range of 90–110% with relative standard deviations < 5%. The rapid detection system for thiamethoxam residue constructed in this study was simple, reliable, reproducible and had strong anti-interference. It has broad application prospects in the field detection of thiamethoxam residue, and serves as a valuable reference for the further development of rapid detection technology of pesticide residues in the field of environment and food safety.
Collapse
Affiliation(s)
- Sihua Peng
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
- College of Plant Protection, Hainan University, Hainan, China
| | - Aqiang Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
| | - Yuyang Lian
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
| | - Xi Zhang
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
| | - Bei Zeng
- College of Plant Protection, Hainan University, Hainan, China
| | - Qiulin Chen
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
| | - Heming Yang
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
| | - Jinlei Li
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
| | - Limin Li
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
| | - Jianguo Dan
- College of Plant Protection, Hainan University, Hainan, China
- * E-mail: (JD); (JL); (SZ)
| | - Jianjun Liao
- College of Ecology and Environment, Hainan University, Hainan, China
- * E-mail: (JD); (JL); (SZ)
| | - Shihao Zhou
- Sanya Nanfan Research Institute of Hainan University, Hainan, China
- Key Laboratory of Germplasm Resources Biology of Tropical Special Ornamental Plants, College of Forestry, Hainan University, Hainan, China
- * E-mail: (JD); (JL); (SZ)
| |
Collapse
|
10
|
Nicholls IA, Golker K, Olsson GD, Suriyanarayanan S, Wiklander JG. The Use of Computational Methods for the Development of Molecularly Imprinted Polymers. Polymers (Basel) 2021; 13:2841. [PMID: 34502881 PMCID: PMC8434026 DOI: 10.3390/polym13172841] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the use of theoretical and computational approaches in the study and development of molecular imprinting systems. These tools are being used to either improve understanding of the mechanisms underlying the function of molecular imprinting systems or for the design of new systems. Here, we present an overview of the literature describing the application of theoretical and computational techniques to the different stages of the molecular imprinting process (pre-polymerization mixture, polymerization process and ligand-molecularly imprinted polymer rebinding), along with an analysis of trends within and the current status of this aspect of the molecular imprinting field.
Collapse
Affiliation(s)
- Ian A. Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Linnaeus University Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden; (K.G.); (G.D.O.); (S.S.); (J.G.W.)
| | | | | | | | | |
Collapse
|
11
|
Su D, Li H, Yan X, Lin Y, Lu G. Biosensors based on fluorescence carbon nanomaterials for detection of pesticides. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116126] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Green Preparation of Fluorescent Nitrogen-Doped Carbon Quantum Dots for Sensitive Detection of Oxytetracycline in Environmental Samples. NANOMATERIALS 2020; 10:nano10081561. [PMID: 32784490 PMCID: PMC7466531 DOI: 10.3390/nano10081561] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 11/17/2022]
Abstract
Nitrogen-doped carbon quantum dots (N-CQDs) with strong fluorescence were prepared by a one-step hydrothermal method using natural biomass waste. Two efficient fluorescent probes were constructed for selective and sensitive detection of oxytetracycline (OTC). The synthesized N-CQDs were characterized by UV-visible absorption spectra, fluorescence spectra, Fourier transform infrared spectroscopy (FT-IR), X-ray photon spectroscopy (XPS), atomic force microscopy (AFM), and high-resolution transmission electron microscopy (HRTEM), which proved that the synthesized N-CQDs surface were functionalized and had stable fluorescence performance. The basis of N-CQDs detection of OTC was discussed, and various reaction conditions were studied. Under optimized conditions, orange peel carbon quantum dots (ON-CQDs) and watermelon peel carbon quantum dots (WN-CQDs) have a good linear relationship with OTC concentrations in the range of 2-100 µmol L-1 and 0.25-100 µmol L-1, respectively. ON-CQDs and WN-CQDs were both successfully applied in detecting the OTC in pretreated tap water, lake water, and soil, with the recovery rate at 91.724-103.206%, and the relative standard deviation was less than 5.35%. The results showed that the proposed N-CQDs proved to be green and simple, greatly reducing the detection time for OTC in the determination environment.
Collapse
|
13
|
Marć M, Wieczorek PP. The preparation and evaluation of core-shell magnetic dummy-template molecularly imprinted polymers for preliminary recognition of the low-mass polybrominated diphenyl ethers from aqueous solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138151. [PMID: 32247120 DOI: 10.1016/j.scitotenv.2020.138151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/20/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
The design, preparation process, binding abilities, morphological characteristic and prospective field of application of dummy-template magnetic molecularly imprinted polymer (DMMIP) for preliminary recognition of the selected low-mass polybrominated diphenyl ethers (PBDE-47 and PBDE-99) from aquatic environment were investigated. The surface of iron oxide (Fe3O4) nanopowder (50-100 nm particles size) was modified with tetraethoxysilane and next prepared Fe3O4@SiO2 particles were dispersed in anhydrous toluene functionalized by (3-aminopropyl)triethoxysilane. Finally, MIPs' thin film layer on the surface of Fe3O4@SiO2@NH2 was formed in acetonitrile as a solvent solution, using ethylene glycol dimethacrylate as the cross-linker, building monomer, 1,1'-Azobis(cyclohexanecarbonitrile) as the radical initiator, methacrylic acid as a functional monomer and 4,4'-Dihydroxydiphenyl ether as the dummy template molecule as a structural analogue of low-mass PBDEs. To characterize the chemical structure of prepared DMMIPs, the Fourier transform infrared spectroscopy analysis was performed. The specific surface area of the developed sorbent was estimated using Brauner-Emmet-Teller nitrogen adsorption/desorption analysis. To assess the average pore sizes, pore diameters and pore volumes of the prepared sorbent, the Barret-Joyner-Halenda technique was applied. The average values of imprinting factor for PBDE-47 and PBDE-99 were 11.3 ± 1.6 and 13.7 ± 1.2, respectively. The average value of recovery of PBDE-47 and PBDE-99 for developed DMMIPs from modelling water: methanol solution were 85.4 ± 6.7% and 86.4 ± 9.4%, respectively. In a case of spiked distilled water, tap water as well as local river water the calculated recovery values ranged from 65%% up to 82% and from 33% up to 76% for PBDE-47 and PBDE-99, respectively. Following the preliminary research on selected water samples, the proposed combination of imprinting technology and core-shell materials with magnetic properties might be considered as a promising sorption tool used for targeted recognition of low-mass PBDEs in aquatic solutions.
Collapse
Affiliation(s)
- Mariusz Marć
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, Gdansk, Poland.
| | - Piotr Paweł Wieczorek
- Department of Analytical and Ecological Chemistry, Faculty of Chemistry, Opole University, Opole, Poland
| |
Collapse
|
14
|
Pan M, Xie X, Liu K, Yang J, Hong L, Wang S. Fluorescent Carbon Quantum Dots-Synthesis,Functionalization and Sensing Application in FoodAnalysis. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E930. [PMID: 32403325 PMCID: PMC7279393 DOI: 10.3390/nano10050930] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 01/10/2023]
Abstract
Carbon quantum dots (CQDs) with stable physicochemical properties are one of theemerging carbon nanomaterials that have been studied in recent years. In addition to the excellentoptical properties such as photoluminescence, photobleaching resistance and light stability, thismaterial also has favorable advantages of good biocompatibility and easy functionalization, whichmake it an ideal raw material for constructing sensing equipment. In addition, CQDs can combinedwith other kinds of materials to form the nanostructured composites with unique properties, whichprovides new insights and ideas for the research of many fields. In the field of food analysis,emerging CQDs have been deeply studied in food composition analysis, detection and monitoringtrace harmful substances and made remarkable research progress. This article introduces andcompares the various methods for CQDs preparation and reviews its related sensing applicationsas a new material in food components analysis and food safety inspection in recent years. It isexpected to provide a significant guidance for the further study of CQDs in the field of foodanalysis and detection. CQDs; synthesis; fluorescent sensing; food analysis.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (M.P.); (X.X.); (K.L.); (J.Y.); (L.H.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|