1
|
Moussa AY, Abbas H, Zewail M, Gaafar PME, Ibrahim N. Green preparation and evaluation of the anti-psoriatic activity of vesicular elastic nanocarriers of kojic acid from Aspergillus oryzae N12: Repurposing of a dermo-cosmetic lead. Arch Pharm (Weinheim) 2024; 357:e2400410. [PMID: 39180243 DOI: 10.1002/ardp.202400410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/15/2024] [Accepted: 07/20/2024] [Indexed: 08/26/2024]
Abstract
Psoriasis is a skin disorder characterized by impaired epidermal differentiation that is regularly treated by systemic drugs with undesirable side effects. Based on its anti-inflammatory, antiproliferative and anti-melanoma attributes, the fungal metabolite kojic acid represents an attractive candidate for anti-psoriatic research. The present work aims to investigate an efficient topical bio-friendly vesicular system loaded with kojic acid isolated from Aspergillus oryzae as an alternative way for the management of psoriasis to avoid systemic toxicity. Kojic acid-loaded spanlastics were prepared by ethanol injection technique, employing span 60 along with brij 35 and cremophor rh40 as edge activators, with the complete in vitro characterization of the developed nanoplatform. The selected formulation displayed a spherical morphology, an optimum particle size of 234.2 ± 1.65 nm, high entrapment efficiency (87.4% ± 0.84%) and significant sustained drug release compared with the drug solution. In vivo studies highlighted the superior relief of psoriasis symptoms and the ability to maintain healthy skin with the least changes in mRNA expression of inflammatory cytokines, achieved by the developed nanoplatform compared to kojic acid solution. Moreover, the in vivo histopathological studies confirmed the safety of the topically applied spanlastics. In addition, the molecular mechanism was approached through in vitro assessment of cathepsin S and PDE-4 inhibitory activities and in silico investigation of kojic acid docking in several anti-psoriatic drug targets. Our results suggest that a topically applied vesicular system loaded with kojic acid could lead to an expansion in the dermo-cosmetic use of kojic acid as a natural bio-friendly alternative for systemic anti-psoriatic drugs.
Collapse
Affiliation(s)
- Ashaimaa Y Moussa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Haidy Abbas
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mariam Zewail
- Pharmaceutics Department, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Passent M E Gaafar
- Department of Pharmaceutics, Division of Pharmaceutical Sciences, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Nehal Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Kulka-Kamińska K, Sionkowska A. The Properties of Thin Films Based on Chitosan/Konjac Glucomannan Blends. Polymers (Basel) 2024; 16:3072. [PMID: 39518281 PMCID: PMC11548683 DOI: 10.3390/polym16213072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
In this work, blend films were prepared by blending 2% chitosan (CS) and 0.5% konjac glucomannan (KGM) solutions. Five ratios of the blend mixture were implemented (95:5, 80:20, 50:50, 20:80, and 5:95), and a pure CS film and a pure KGM film were also obtained. All the polymeric films were evaluated using FTIR spectroscopy, mechanical testing, SEM and AFM imaging, thermogravimetric analyses, swelling and degradation analyses, and contact angle measurements. The CS/KGM blends were assessed for their miscibility. Additionally, the blend films' properties were evaluated after six months of storage. The proposed blends had good miscibility in a full range of composition proportions. The blend samples, compared to the pure CS film, indicated better structural integrity. The surface structure of the blend films was rather uniform and smooth. The sample CS/KGM 20:80 had the highest roughness value (Rq = 12.60 nm). The KGM addition increased the thermal stability of films. The blend sample CS/KGM 5:95 exhibited the greatest swelling ability, reaching a swelling degree of 946% in the first fifteen minutes of the analysis. Furthermore, the addition of KGM to CS improved the wettability of the film samples. As a result of their good mechanical properties, surface characteristics, and miscibility, the proposed CS/KGM blends are promising materials for topical biomedical and cosmetic applications.
Collapse
Affiliation(s)
- Karolina Kulka-Kamińska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7 Street, 87-100 Torun, Poland
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7 Street, 87-100 Torun, Poland
| |
Collapse
|
3
|
Wang Z, Zheng Y, Hu Y, Yang L, Liu X, Zhao R, Gao M, Li Z, Feng Y, Xu Y, Li N, Yang J, Wang Q, An L. Improvement of antibacterial activity of polysaccharides via chemical modification: A review. Int J Biol Macromol 2024; 269:132163. [PMID: 38729490 DOI: 10.1016/j.ijbiomac.2024.132163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Antibiotic residue and bacterial resistance induced by antibiotic abuse have seriously threatened food safety and human healthiness. Thus, the development and application of safe, high-efficiency, and environmentally friendly antibiotic alternatives are urgently necessary. Apart from antitumor, antivirus, anti-inflammatory, gut microbiota regulation, immunity improvement, and growth promotion activities, polysaccharides also have antibacterial activity, but such activity is relatively low, which cannot satisfy the requirements of food preservation, clinical sterilization, livestock feeding, and agricultural cultivation. Chemical modification not only provides polysaccharides with better antibacterial activity, but also promotes easy operation and large-scale production. Herein, the enhancement of the antibacterial activity of polysaccharides via acetylation, sulfation, phosphorylation, carboxymethylation, selenation, amination, acid graft, and other chemical modifications is reviewed. Meanwhile, a new trend on the application of loading chemically modified polysaccharides into nanostructures is discussed. Furthermore, possible limitations and future recommendations for the development and application of chemically modified polysaccharides with better antibacterial activity are suggested.
Collapse
Affiliation(s)
- Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yi Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yiwei Hu
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Libo Yang
- School of Landscape and Ecological Engineering, Hebei University of Engineering, 19 Taiji Road, Handan, Hebei 056038, China.
| | - Xirui Liu
- School of Foreign Languages, Henan University of Technology, Zhengzhou 450001, China
| | - Renyong Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yingjie Feng
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Yongming Xu
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China
| | - Na Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou 450000, China.
| | - Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Lemei An
- Department of Rheumatology and Clinical Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
4
|
Zhou T, Hao J, Tang Q, Chandarajoti K, Ye W, Fan C, Wang X, Wang C, Zhang K, Han X, Zhou W, Ge Y. Antimicrobial activity and structure-activity relationships of molecules containing mono- or di- or oligosaccharides: An update. Bioorg Chem 2024; 148:107406. [PMID: 38728907 DOI: 10.1016/j.bioorg.2024.107406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
Bacterial infections are the second leading cause of death worldwide, and the evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens exacerbate the threat crisis. Carbohydrates participate in bacterial infection, drug resistance and the process of host immune regulation. Numerous antimicrobials derived from carbohydrates or contained carbohydrate scaffolds that are conducive to an increase in pathogenic bacteria targeting, the physicochemical properties and druggability profiles. In the paper, according to the type and number of sugar residues contained in antimicrobial molecules collected from the literatures ranging from 2014 to 2024, the antimicrobial activities, action mechanisms and structure-activity relationships were delineated and summarized, for purpose to provide the guiding template to select the type and size of sugars in the design of oligosaccharide-based antimicrobials to fight the looming antibiotic resistance crisis.
Collapse
Affiliation(s)
- Tiantian Zhou
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, E. 280, University town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China
| | - Jiongkai Hao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Kasemsiri Chandarajoti
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat‑Yai, Songkhla, 90112, Thailand
| | - Wenchong Ye
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chuangchuang Fan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241, Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yuewei Ge
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, E. 280, University town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong, China.
| |
Collapse
|
5
|
Lestari KD, Dwiputri E, Kurniawan Tan GH, Sulijaya B, Soeroso Y, Natalina N, Harsas NA, Takahashi N. Exploring the Antibacterial Potential of Konjac Glucomannan in Periodontitis: Animal and In Vitro Studies. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1778. [PMID: 37893496 PMCID: PMC10608271 DOI: 10.3390/medicina59101778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Periodontitis is an inflammatory disease in the supporting tissues of the teeth caused by specific microorganisms or groups of microorganisms. P. gingivalis bacterium is the keystone pathogen in periodontitis, so even at low concentrations, it has a considerable influence on the oral community. Antimicrobials and antiplaque agents can be used as adjunctive therapy for periodontitis treatment. Konjac glucomannan (KGM), as a natural polysaccharide, has flavonoid (3,5-diacetyltambulin) and triterpenoids (ambylon) compounds that show antibacterial activity. This research aims to analyze the antibacterial activity of KGM on animal and in vitro periodontitis models. Materials and Methods: The animal study divided 48 mice into four groups (control, KGM, periodontitis, KGM + periodontitis). Mice were given an intervention substance by oral gavage from day 1 to day 14, periodontitis was induced on day 7, and decapitation was performed on day 14. Samples from the right maxillary jaw of mice were used for histological preparations and morphometrics analysis. In vitro studies were carried out by adding several concentrations of KGM (25, 50, and 100 μg/mL) into a planktonic P. gingivalis and P. gingivalis biofilm. Results: In the animal model, KGM could prevent alveolar bone loss in the periodontitis mice model, both in histologic and morphometrics assessments. In vitro, KGM had antibacterial activity against P. gingivalis with better bacteriostatic (15-23%) than bactericidal (11-20%) ability, proven by its ability to inhibit P. gingivalis proliferation. Conclusions: KGM can be considered to have the potential as an antibacterial agent to prevent periodontitis. The prevention of periodontitis may improve patient well-being and human quality of life.
Collapse
Affiliation(s)
- Kartika Dhipta Lestari
- Postgraduate Program in Periodontology, Department of Periodontology, University of Indonesia, Jakarta 10430, Indonesia; (K.D.L.); (E.D.); (G.H.K.T.)
| | - Edlyn Dwiputri
- Postgraduate Program in Periodontology, Department of Periodontology, University of Indonesia, Jakarta 10430, Indonesia; (K.D.L.); (E.D.); (G.H.K.T.)
| | - Geraldi Hartono Kurniawan Tan
- Postgraduate Program in Periodontology, Department of Periodontology, University of Indonesia, Jakarta 10430, Indonesia; (K.D.L.); (E.D.); (G.H.K.T.)
| | - Benso Sulijaya
- Department of Periodontology, Faculty of Dentistry, University of Indonesia, Jakarta 10430, Indonesia; (Y.S.); (N.N.); (N.A.H.)
| | - Yuniarti Soeroso
- Department of Periodontology, Faculty of Dentistry, University of Indonesia, Jakarta 10430, Indonesia; (Y.S.); (N.N.); (N.A.H.)
| | - Natalina Natalina
- Department of Periodontology, Faculty of Dentistry, University of Indonesia, Jakarta 10430, Indonesia; (Y.S.); (N.N.); (N.A.H.)
| | - Nadhia Anindhita Harsas
- Department of Periodontology, Faculty of Dentistry, University of Indonesia, Jakarta 10430, Indonesia; (Y.S.); (N.N.); (N.A.H.)
| | - Naoki Takahashi
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan;
| |
Collapse
|
6
|
Isolation of a new strain of Aspergillus and molecular structure elucidation of unknown metabolite produced from castor oil. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Zhang Y, Zhao Y, Yang W, Song G, Zhong P, Ren Y, Zhong G. Structural complexity of Konjac glucomannan and its derivatives governs the diversity and outputs of gut microbiota. Carbohydr Polym 2022; 292:119639. [DOI: 10.1016/j.carbpol.2022.119639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 11/02/2022]
|
8
|
Wang Q, Song Y, Sun J, Jiang G. A novel functionalized food packaging film with microwave-modified konjac glucomannan/chitosan/citric acid incorporated with antioxidant of bamboo leaves. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Precup G, Venus J, Heiermann M, Schneider R, Pop ID, Vodnar DC. Chemical and Enzymatic Synthesis of Biobased Xylo-Oligosaccharides and Fermentable Sugars from Wheat Straw for Food Applications. Polymers (Basel) 2022; 14:1336. [PMID: 35406211 PMCID: PMC9003230 DOI: 10.3390/polym14071336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023] Open
Abstract
Xylo-oligosaccharides are sugar oligomers with 2~7 xylose units considered non-digestible fibers that can be produced from biodegradable and low-cost biomass like wheat straw. An integrated approach consisting of hydrothermal pretreatment, alkaline treatment, enzymatic treatment and the combinations thereof was applied to overcome the recalcitrance structure of the wheat straw and allow selective fractioning into fermentable sugars and xylo-oligosaccharides. The hydrolysates and processed solids were chemically characterized by High-performance liquid chromatography and Ion chromatography, and the results were expressed as function of the severity factor and statistically interpreted. The concentration of fermentable sugars (glucose, xylose, arabinose) was the highest after the combination of alkaline and enzymatic treatment with xylanase (18 g/L sugars), while xylo-oligosaccharides (xylotriose and xylotetraose) were released in lower amounts (1.33 g/L) after the same treatment. Refining experiments were carried out to obtain a purified fraction by using anion and cation exchange chromatography. The polymer adsorber resin MN-502 showed efficient removal of salts, phenols and furan derivatives. However, the xylo-oligosaccharides yields were also slightly reduced. Although still requiring further optimization of the treatments to obtain higher purified oligomer yields, the results provide information on the production of xylo-oligosaccharides and fermentable sugars from wheat straw for potential use in food applications.
Collapse
Affiliation(s)
- Gabriela Precup
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| | - Joachim Venus
- Leibniz Institute for Agricultural Engineering & Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany; (J.V.); (M.H.); (R.S.)
| | - Monika Heiermann
- Leibniz Institute for Agricultural Engineering & Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany; (J.V.); (M.H.); (R.S.)
| | - Roland Schneider
- Leibniz Institute for Agricultural Engineering & Bioeconomy, Max-Eyth-Allee 100, 14469 Potsdam, Germany; (J.V.); (M.H.); (R.S.)
| | - Ioana Delia Pop
- Department of Exact Sciences, Horticulture Faculty, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Calea Mănăştur 3-5, 400372 Cluj-Napoca, Romania;
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
10
|
Chen W, Hu Q. Secondary Metabolites of Purpureocilliumlilacinum. Molecules 2021; 27:18. [PMID: 35011248 PMCID: PMC8746413 DOI: 10.3390/molecules27010018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022] Open
Abstract
Fungi can synthesize a wealth of secondary metabolites, which are widely used in the exploration of lead compounds of pharmaceutical or agricultural importance. Beauveria, Metarhizium, and Cordyceps are the most extensively studied fungi in which a large number of biologically active metabolites have been identified. However, relatively little attention has been paid to Purpureocillium lilacinum. P. lilacinum are soil-habituated fungi that are widely distributed in nature and are very important biocontrol fungi in agriculture, providing good biological control of plant parasitic nematodes and having a significant effect on Aphidoidea, Tetranychus cinnbarinus, and Aleyrodidae. At the same time, it produces secondary metabolites with various biological activities such as anticancer, antimicrobial, and insecticidal. This review attempts to provide a comprehensive overview of the secondary metabolites of P. lilacinum, with emphasis on the chemical diversity and biological activity of these secondary metabolites and the biosynthetic pathways, and gives new insight into the secondary metabolites of medical and entomogenous fungi, which is expected to provide a reference for the development of medicine and agrochemicals in the future.
Collapse
Affiliation(s)
| | - Qiongbo Hu
- Key Laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
11
|
Dong C, Xu M, Wang S, Ma M, Akakuru OU, Ding H, Wu A, Zha Z, Wang X, Bi H. Fluorescent carbon dots with excellent moisture retention capability for moisturizing lipstick. J Nanobiotechnology 2021; 19:299. [PMID: 34592992 PMCID: PMC8482577 DOI: 10.1186/s12951-021-01029-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
Long-lasting moisture retention is a huge challenge to humectants, and effective methods or additives for promote these functions are limited, especially nano-additives. Carbon dots (CDs) have attracted increasing research interest due to its ultra-small size, excellent optical properties and low toxicity, etc. However, most of researches have been focused on the photoexcited CDs and its subsequent photophysical and chemical processes, such as photoluminescence, photodynamic, photothermal and photocatalytic behavior. The intrinsic chemo-physical properties of the pristine CDs are not fully explored. Here, we report an excellent moisture retention capability of a new carmine cochineal-derived CDs (Car-CDs) for the first time. The relationship between the structure of Car-CDs and its moisture retention capability is revealed. More interestingly, the effective applications of Car-CDs in moisturizing lipstick are demonstrated. This work expands the research and application of CDs into a broad, new area, potentially in skin care.
Collapse
Affiliation(s)
- Chen Dong
- School of Chemistry and Chemical Engineering, Key Laboratory of Environment Friendly Polymer Materials of Anhui Province, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, 230601, China
| | - Mingsheng Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Environment Friendly Polymer Materials of Anhui Province, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, 230601, China
| | - Shuna Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Environment Friendly Polymer Materials of Anhui Province, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, 230601, China
| | - Menghui Ma
- School of Chemistry and Chemical Engineering, Key Laboratory of Environment Friendly Polymer Materials of Anhui Province, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, 230601, China
| | - Ozioma U Akakuru
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Haizhen Ding
- School of Chemistry and Chemical Engineering, Key Laboratory of Environment Friendly Polymer Materials of Anhui Province, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, 230601, China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, International Cooperation Base of Biomedical Materials Technology and Application, CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516003, China.
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Xuemei Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Environment Friendly Polymer Materials of Anhui Province, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, 230601, China
| | - Hong Bi
- School of Chemistry and Chemical Engineering, Key Laboratory of Environment Friendly Polymer Materials of Anhui Province, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei, 230601, China.
| |
Collapse
|
12
|
Extraction Procedure, Characteristics, and Feasibility of Caulerpa microphysa (Chlorophyta) Polysaccharide Extract as a Cosmetic Ingredient. Mar Drugs 2021; 19:md19090524. [PMID: 34564186 PMCID: PMC8470774 DOI: 10.3390/md19090524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 02/02/2023] Open
Abstract
The green alga Caulerpa microphysa, which is native to Taiwan, has a relatively high economic value and a well-developed culture technique, and is used mainly as a foodstuff. Its extract has been shown to exhibit antitumor properties, but the polysaccharide content of the extract and its anti-inflammatory and wound-healing effects and moisture-absorption and -retention capacity remain unknown. Hence, the objective of this study was to evaluate the potential of the polysaccharides in C. microphysa extract (CME) for use in cosmetics. The overall polysaccharide yield from the CME was 73.93% w/w, with four molecular weight fractions. The polysaccharides comprised 59.36 mol% mannose, 27.16 mol% glucose, and 13.48 mol% galactose. In addition, the CME exhibited strong antiallergic, wound-healing, transdermal-delivery, and moisture-absorption and -retention effects. In conclusion, the results suggested that CME potentially has anti-inflammatory and wound-healing effects and a good moisture capacity, which can be used in cosmetic applications.
Collapse
|
13
|
Khan A, Park TJ, Ikram M, Ahmad S, Ahmad R, Jo MG, Kim MO. Antioxidative and Anti-inflammatory Effects of Kojic Acid in Aβ-Induced Mouse Model of Alzheimer's Disease. Mol Neurobiol 2021; 58:5127-5140. [PMID: 34255249 DOI: 10.1007/s12035-021-02460-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a common cause of dementia that is clinically characterized by the loss of memory and cognitive functions. Currently, there is no specific cure for the management of AD, although natural compounds are showing promising therapeutic potentials because of their safety and easy availability. Herein, we evaluated the neuroprotective properties of kojic acid (KA) in an AD mouse model. Intracerebroventricular injection (i.c.v) of Aβ1-42 (5 μL/5 min/mouse) into wild-type adult mice induced AD-like pathological changes in the mouse hippocampus by increasing oxidative stress and neuroinflammation, affecting memory and cognitive functions. Interestingly, oral treatment of kojic acid (50 mg/kg/mouse for 3 weeks) reversed the AD pathology by reducing the expression of amyloid-beta (Aβ) and beta-site amyloid precursor protein cleaving enzyme1 (BACE-1). Moreover, kojic acid reduced oxidative stress by enhancing the expression of nuclear factor erythroid-related factor 2 (Nrf2) and heme oxygenase 1 (HO1). Also, kojic acid reduced the lipid peroxidation and reactive oxygen species in the Aβ + kojic acid co-treated mice brains. Moreover, kojic acid decreased neuroinflammation by inhibiting Toll-like receptor 4, phosphorylated nuclear factor-κB, tumor necrosis factor-alpha, interleukin 1-beta (TLR-4, p-NFκB, TNFα, and IL-1β, respectively), and glial cells. Furthermore, kojic acid enhanced synaptic markers (SNAP-23, SYN, and PSD-95) and memory functions in AD model mice. Additionally, kojic acid treatment also decreased Aβ expression, oxidative stress, and neuroinflammation in vitro in HT-22 mouse hippocampal cells. To the best of our knowledge, this is the first study to show the neuroprotective effects of kojic acid against an AD mouse model. Our findings could serve as a favorable and alternative strategy for the discovery of novel drugs to treat AD-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Amjad Khan
- Division of Applied Life Science (BK 21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Tae Ju Park
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, MVLS, University of Glasgow, Glasgow, UK
| | - Muhammad Ikram
- Division of Applied Life Science (BK 21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sareer Ahmad
- Division of Applied Life Science (BK 21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Riaz Ahmad
- Division of Applied Life Science (BK 21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Min Gi Jo
- Division of Applied Life Science (BK 21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
14
|
Santos CS, Silva AR. Current and alternative trends in antibacterial agents used in mammalian semen technology. Anim Reprod 2020; 17:e20190111. [PMID: 32399069 PMCID: PMC7212743 DOI: 10.21451/1984-3143-ar2019-0111] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The use of antibacterial substances as additives in extenders for ensuring the sanitary quality of the semen employed in reproductive biotechniques and preserving it from bacterial deterioration has been reported since the mid-twentieth century. However, the deleterious effects of these drugs on the sperm quality as well as their effectiveness in controlling bacterial growth in the preserved semen have been questioned. The aim of this review was to report the antimicrobials primarily used in the extenders added to the semen of mammals, and to present alternatives to their use. Among the various mammalian species, there is a large variation regarding the antimicrobial types added to semen extenders as cephalosporins (ceftiofur, cefdinir, eg) and quinolones (ofloxacin, ciprofloxacin), alone or in combination with large action spectra substances as penicillin-streptomycin and gentamicin-tylosin-lincomycin-spectinomycin. To combat problems related to bacterial resistance to these drugs, the emergence of alternatives is increasingly evident. Among these alternatives, use of physical methods as centrifugation and filtration, as well as the use of antimicrobial peptides and other substances from different origins have been highlighted for presenting antimicrobial potential.
Collapse
Affiliation(s)
- Caio Sérgio Santos
- Departamento de Ciências Animais, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brasil
| | | |
Collapse
|