1
|
Novikova T, Ovchinnikov A, Pogudin G, Ramella-Roman JC. Time-efficient filtering of imaging polarimetric data by checking physical realizability of experimental mueller matrices. Bioinformatics 2024; 40:btae348. [PMID: 38830086 PMCID: PMC11283285 DOI: 10.1093/bioinformatics/btae348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/01/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024] Open
Abstract
MOTIVATION Imaging Mueller polarimetry has already proved its potential for biomedicine, remote sensing and metrology. The real-time applications of this modality require both video rate image acquisition and fast data post-processing algorithms. First, one must check the physical realizability of the experimental Mueller matrices in order to filter out non-physical data, ie to test the positive semi-definiteness of the 4 × 4 Hermitian coherency matrix calculated from the elements of corresponding Mueller matrix pixel-wise. For this purpose, we compared the execution time for the calculations of i) eigenvalues, ii) Cholesky decomposition, iii) Sylvester's criterion, and iv) coefficients of the characteristic polynomial (two different approaches) of the Hermitian coherency matrix, all calculated for the experimental Mueller matrix images (600 pixels × 700 pixels) of mouse uterine cervix. The calculations were performed using C ++ and Julia programming languages. RESULTS Our results showed the superiority of the algorithm iv) based on the simplification via Pauli matrices over other algorithms for our dataset. The sequential implementation of latter algorithm on a single core already satisfies the requirements of real-time polarimetric imaging. This can be further amplified by the proposed parallelization (e.g., we achieve a 5-fold speed up on 6 cores). AVAILABILITY AND IMPLEMENTATION The source codes of the algorithms and experimental data are available at https://github.com/pogudingleb/mueller_matrices.
Collapse
Affiliation(s)
- Tatiana Novikova
- LPICM, CNRS, Ecole Polytechnique, IP Paris, Palaiseau, 91120, France
- Department of Biomedical Engineering, Florida International University, Miami, FL , 33174, United States
| | - Alexey Ovchinnikov
- Department of Mathematics, CUNY Queens College, 65-30 Kissena Blvd, Queens, NY, 11367, United States
- Ph.D. Programs in Mathematics and Computer Science, CUNY Graduate Center, 365 Fifth Avenue, New York, NY, 10016, United States
| | - Gleb Pogudin
- Laboratoire d’informatique, CNRS, Ecole Polytechnique, IP Paris, Palaiseau, 91120, France
| | - Jessica C Ramella-Roman
- Department of Biomedical Engineering, Florida International University, Miami, FL , 33174, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, United States
| |
Collapse
|
2
|
Sundermann J, Sydow S, Burmeister L, Hoffmann A, Menzel H, Bunjes H. Spatially and Temporally Controllable BMP-2 and TGF-β 3 Double Release From Polycaprolactone Fiber Scaffolds via Chitosan-Based Polyelectrolyte Coatings. ACS Biomater Sci Eng 2024; 10:89-98. [PMID: 35622002 DOI: 10.1021/acsbiomaterials.1c01585] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Temporally and spatially controlled growth factor release from a polycaprolactone fiber mat, which also provides a matrix for directional cell colonization and infiltration, could be a promising regenerative approach for degenerated tendon-bone junctions. For this purpose, polycaprolactone fiber mats were coated with tailored chitosan-based nanogels to bind and release the growth factors bone morphogenetic protein 2 (BMP-2) and transforming growth factor-β3 (TGF-β3), respectively. In this work we provide meaningful in vitro data for the understanding of the drug delivery performance and sterilizability of novel implant prototypes in order to lay the foundation for in vivo testing. ELISA-based in vitro release studies were used to investigate the spatial and temporal control of release, as well as the influence of radiation sterilization on protein activity and release behavior. Layer-by-layer coatings based on BMP-2-containing chitosan tripolyphosphate nanogel particles and negatively charged alginate showed a good sustainment of BMP-2 release from chemically modified polycaprolactone fiber mats. Release control improved with increasing layer numbers. The approach of controlling the release via a barrier of cross-linked chitosan azide proved less promising. By using a simple, partial immersion-based dip-coating process, it was possible to apply opposing gradients of the growth factors BMP-2 and TGF-β3. Final radiation sterilization of the growth factor-loaded implant prototypes resulted in a radiation dose-correlated degradation of the growth factors, which could be prevented by lyophilization into protective matrices. For the manufacture of sterile implants, the growth factor loading step must probably be carried out under aseptic conditions. The layer-by-layer coated implant prototypes provided sustained release from opposing gradients of the growth factors BMP-2 and TGF-β3 and thus represent a promising approach for the restoration of tendon-bone defects.
Collapse
Affiliation(s)
- Julius Sundermann
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie und Biopharmazie, Mendelssohnstraβe 1, 38106 Braunschweig, Germany
| | - Steffen Sydow
- Technische Universität Braunschweig, Institut für Technische Chemie, Hagenring 30, 38106 Braunschweig, Germany
| | - Laura Burmeister
- Hannover Medical School, Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, Laboratory of Biomechanics and Biomaterials, Stadtfelddamm 34, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Andrea Hoffmann
- Hannover Medical School, Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, Laboratory of Biomechanics and Biomaterials, Stadtfelddamm 34, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), Stadtfelddamm 34, 30625 Hannover, Germany
| | - Henning Menzel
- Technische Universität Braunschweig, Institut für Technische Chemie, Hagenring 30, 38106 Braunschweig, Germany
- Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Straβe 35a, 38106 Braunschweig, Germany
| | - Heike Bunjes
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie und Biopharmazie, Mendelssohnstraβe 1, 38106 Braunschweig, Germany
- Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), Franz-Liszt-Straβe 35a, 38106 Braunschweig, Germany
| |
Collapse
|
3
|
Jütte L, Patel H, Roth B. Improved polarimetric analysis of human skin through stitching: advantages, limitations, and applications in dermatology. Biomed Phys Eng Express 2023; 10:015007. [PMID: 37988749 DOI: 10.1088/2057-1976/ad0e87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/21/2023] [Indexed: 11/23/2023]
Abstract
Polarimetry is a powerful tool for the analysis of the optical properties of materials and systems, such as human skin. However, in many polarimetric setups, the field of view is limited to a few square centimeters. In these cases, it is possible to resort to stitching techniques, which involve combining multiple Mueller matrix measurements obtained from different overlapping regions of the sample. In this paper, we propose a stitching technique for polarimetric data and discuss its advantages and limitations. We also describe the potential of image stitching for improving the accuracy and robustness ofin vivopolarimetry in the presence of random patient movement. We conducted our research using a diverse set of samples which included porcine skin, human skin from arms and fingers, cold cuts of chicken and gelatine, alongside synthetically created sample data. Our results demonstrate the effectiveness of this technique for the application in dermatology. Each additionalin vivomeasurement enhances the field of view by approximately one third, thereby considerably augmenting the total observation area. We show that stitching enables for the polarimetric assessment of large skin patches which is useful for the diagnosis of inflammatory skin diseases.
Collapse
Affiliation(s)
- Lennart Jütte
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Hannover, Germany
| | - Harshkumar Patel
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Hannover, Germany
| | - Bernhard Roth
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Hannover, Germany
- PhoenixD, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
4
|
Berten-Schunk L, Roger Y, Bunjes H, Hoffmann A. Release of TGF-β 3 from Surface-Modified PCL Fiber Mats Triggers a Dose-Dependent Chondrogenic Differentiation of Human Mesenchymal Stromal Cells. Pharmaceutics 2023; 15:pharmaceutics15041303. [PMID: 37111788 PMCID: PMC10146193 DOI: 10.3390/pharmaceutics15041303] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The design of implants for tissue transitions remains a major scientific challenge. This is due to gradients in characteristics that need to be restored. The rotator cuff in the shoulder, with its direct osteo-tendinous junction (enthesis), is a prime example of such a transition. Our approach towards an optimized implant for entheses is based on electrospun fiber mats of poly(ε-caprolactone) (PCL) as biodegradable scaffold material, loaded with biologically active factors. Chitosan/tripolyphosphate (CS/TPP) nanoparticles were used to load transforming growth factor-β3 (TGF-β3) with increasing loading concentrations for the regeneration of the cartilage zone within direct entheses. Release experiments were performed, and the concentration of TGF-β3 in the release medium was determined by ELISA. Chondrogenic differentiation of human mesenchymal stromal cells (MSCs) was analyzed in the presence of released TGF-β3. The amount of released TGF-β3 increased with the use of higher loading concentrations. This correlated with larger cell pellets and an increase in chondrogenic marker genes (SOX9, COL2A1, COMP). These data were further supported by an increase in the glycosaminoglycan (GAG)-to-DNA ratio of the cell pellets. The results demonstrate an increase in the total release of TGF-β3 by loading higher concentrations to the implant, which led to the desired biological effect.
Collapse
Affiliation(s)
- Leonie Berten-Schunk
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie und Biopharmazie, 38106 Braunschweig, Germany
| | - Yvonne Roger
- Hannover Medical School, Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, Laboratory of Biomechanics and Biomaterials, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| | - Heike Bunjes
- Technische Universität Braunschweig, Institut für Pharmazeutische Technologie und Biopharmazie, 38106 Braunschweig, Germany
- Technische Universität Braunschweig, Zentrum für Pharmaverfahrenstechnik (PVZ), 38106 Braunschweig, Germany
| | - Andrea Hoffmann
- Hannover Medical School, Department of Orthopedic Surgery, Graded Implants and Regenerative Strategies, Laboratory of Biomechanics and Biomaterials, 30625 Hannover, Germany
- Niedersächsisches Zentrum für Biomedizintechnik, Implantatforschung und Entwicklung (NIFE), 30625 Hannover, Germany
| |
Collapse
|
5
|
Jütte L, Roth B. Mueller Matrix Microscopy for In Vivo Scar Tissue Diagnostics and Treatment Evaluation. SENSORS (BASEL, SWITZERLAND) 2022; 22:9349. [PMID: 36502051 PMCID: PMC9740816 DOI: 10.3390/s22239349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Scars usually do not show strong contrast under standard skin examination relying on dermoscopes. They usually develop after skin injury when the body repairs the damaged tissue. In general, scars cause multiple types of distress such as movement restrictions, pain, itchiness and the psychological impact of the associated cosmetic disfigurement with no universally successful treatment option available at the moment. Scar treatment has significant economic impact as well. Mueller matrix polarimetry with integrated autofocus and automatic data registration can potentially improve scar assessment by the dermatologist and help to make the evaluation of the treatment outcome objective. Polarimetry can provide new physical parameters for an objective treatment evaluation. We show that Mueller matrix polarimetry can enable strong contrast for in vivo scar imaging. Additionally, our results indicate that the polarization stain images obtained form there could be a useful tool for dermatology. Furthermore, we demonstrate that polarimetry can be used to monitor wound healing, which may help prevent scarring altogether.
Collapse
Affiliation(s)
- Lennart Jütte
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Nienburger Straße 17, 30167 Hannover, Germany
| | - Bernhard Roth
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Nienburger Straße 17, 30167 Hannover, Germany
- Cluster of Excellence PhoenixD (Photonics, Optics and Engineering—Innovation Across Disciplines), Welfengarten 1A, 30167 Hannover, Germany
| |
Collapse
|
6
|
Jütte L, Sharma G, Patel H, Roth B. Registration of polarimetric images for in vivo skin diagnostics. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:096001. [PMID: 36042549 PMCID: PMC9424913 DOI: 10.1117/1.jbo.27.9.096001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
SIGNIFICANCE Mueller matrix (MM) polarimetry is a promising tool for the detection of skin cancer. Polarimetric in vivo measurements often suffer from misalignment of the polarimetric images due to motion, which can lead to false results. AIM We aim to provide an easy-to-implement polarimetric image data registration method to ensure proper image alignment. APPROACH A feature-based image registration is implemented for an MM polarimeter for phantom and in vivo human skin measurements. RESULTS We show that the keypoint-based registration of polarimetric images is necessary for in vivo skin polarimetry to ensure reliable results. Further, we deliver an efficient semiautomated method for the registration of polarimetric images. CONCLUSIONS Image registration for in vivo polarimetry of human skin is required for improved diagnostics and can be efficiently enhanced with a keypoint-based approach.
Collapse
Affiliation(s)
- Lennart Jütte
- Leibniz University Hannover, Hannover Centre for Optical Technologies, Hannover, Germany
| | - Gaurav Sharma
- Leibniz University Hannover, Hannover Centre for Optical Technologies, Hannover, Germany
| | - Harshkumar Patel
- Leibniz University Hannover, Hannover Centre for Optical Technologies, Hannover, Germany
| | - Bernhard Roth
- Leibniz University Hannover, Hannover Centre for Optical Technologies, Hannover, Germany
- Leibniz University Hannover, Cluster of Excellence PhoenixD, Hannover, Germany
| |
Collapse
|
7
|
Applications of Mueller Matrix Polarimetry to Biological and Agricultural Diagnostics: A Review. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12105258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The review contains a systematization of the main approaches to the practical implementation of Mueller matrix polarimetry and the prospects for its application in biology and agriculture. The most typical optical layouts for measuring the Mueller matrix of various objects, such as disperse systems, tissues and surface structures, are discussed. Mueller matrix measurements, being integrated into standard schemes of conventional optical methods, such as scatterometry, optical coherence tomography, fluorimetry, spectrophotometry and reflectometry, can significantly expand their capabilities in the characterization of biological systems and bioorganic materials. Additionally, microwave Mueller matrix polarimetry can be used for monitoring soil conditions and crop growth. The proposed systematization is aimed at outlining the conceptual directions for the development of non-invasive diagnostic tools based on measuring the Mueller matrix, primarily with a focus on biological research and agricultural practice.
Collapse
|
8
|
Delp A, Becker A, Hülsbusch D, Scholz R, Müller M, Glasmacher B, Walther F. In Situ Characterization of Polycaprolactone Fiber Response to Quasi-Static Tensile Loading in Scanning Electron Microscopy. Polymers (Basel) 2021; 13:polym13132090. [PMID: 34202874 PMCID: PMC8271998 DOI: 10.3390/polym13132090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
Microstructural responses to the mechanical load of polymers used in tissue engineering is notably important for qualification at in vivo testing, although insufficiently studied, especially regarding promising polycaprolactone (PCL). For further investigations, electrospun PCL scaffolds with different degrees of fiber alignment were produced, using two discrete relative drum collector velocities. Development and preparation of an adjusted sample geometry enabled in situ tensile testing in scanning electron microscopy. By analyzing the microstructure and the use of selected tracking techniques, it was possible to visualize and quantify fiber/fiber area displacements as well as local fractures of single PCL fibers, considering quasi-static tensile load and fiber alignment. The possibility of displacement determination using in situ scanning electron microscopy techniques for testing fibrous PCL scaffolds was introduced and quantified.
Collapse
Affiliation(s)
- Alexander Delp
- Department of Materials Test Engineering (WPT), TU Dortmund University, 44227 Dortmund, Germany; (D.H.); (R.S.); (F.W.)
- Correspondence: (A.D.); (A.B.)
| | - Alexander Becker
- Institute for Multiphase Processes, Leibniz University Hannover, 30823 Garbsen, Germany; (M.M.); (B.G.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- Correspondence: (A.D.); (A.B.)
| | - Daniel Hülsbusch
- Department of Materials Test Engineering (WPT), TU Dortmund University, 44227 Dortmund, Germany; (D.H.); (R.S.); (F.W.)
| | - Ronja Scholz
- Department of Materials Test Engineering (WPT), TU Dortmund University, 44227 Dortmund, Germany; (D.H.); (R.S.); (F.W.)
| | - Marc Müller
- Institute for Multiphase Processes, Leibniz University Hannover, 30823 Garbsen, Germany; (M.M.); (B.G.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, 30823 Garbsen, Germany; (M.M.); (B.G.)
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| | - Frank Walther
- Department of Materials Test Engineering (WPT), TU Dortmund University, 44227 Dortmund, Germany; (D.H.); (R.S.); (F.W.)
| |
Collapse
|
9
|
Suresh S, Becker A, Glasmacher B. Impact of Apparatus Orientation and Gravity in Electrospinning-A Review of Empirical Evidence. Polymers (Basel) 2020; 12:polym12112448. [PMID: 33105879 PMCID: PMC7690589 DOI: 10.3390/polym12112448] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/29/2022] Open
Abstract
Electrospinning is a versatile fibre fabrication method with applications from textile to tissue engineering. Despite the appearance that the influencing parameters of electrospinning are fully understood, the effect of setup orientation has not been thoroughly investigated. With current burgeoning interest in modified and specialised electrospinning apparatus, it is timely to review the impact of this seldom-considered parameter. Apparatus configuration plays a major role in the morphology of the final product. The primary difference between spinning setups is the degree to which the electrical force and gravitational force contribute. Since gravity is much lower in magnitude when compared with the electrostatic force, it is thought to have no significant effect on the spinning process. But the shape of the Taylor cone, jet trajectory, fibre diameter, fibre diameter distribution, and overall spinning efficiency are all influenced by it. In this review paper, we discuss all these developments and more. Furthermore, because many research groups build their own electrospinning apparatus, it would be prudent to consider this aspect as particular orientations are more suitable for certain applications.
Collapse
Affiliation(s)
- Sinduja Suresh
- Institute for Multiphase Processes (IMP), Leibniz University Hannover, 30823 Garbsen, Hannover, Germany;
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- Hannover Medical School (MHH), 30625 Hannover, Germany
- Correspondence: (S.S.); (A.B.)
| | - Alexander Becker
- Institute for Multiphase Processes (IMP), Leibniz University Hannover, 30823 Garbsen, Hannover, Germany;
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
- Correspondence: (S.S.); (A.B.)
| | - Birgit Glasmacher
- Institute for Multiphase Processes (IMP), Leibniz University Hannover, 30823 Garbsen, Hannover, Germany;
- Lower Saxony Centre for Biomedical Engineering, Implant Research and Development (NIFE), 30625 Hannover, Germany
| |
Collapse
|
10
|
Fricke D, Becker A, Heratizadeh A, Knigge S, Jütte L, Wollweber M, Werfel T, Roth BW, Glasmacher B. Mueller Matrix Analysis of Collagen and Gelatin Containing Samples Towards More Objective Skin Tissue Diagnostics. Polymers (Basel) 2020; 12:polym12061400. [PMID: 32580462 PMCID: PMC7361993 DOI: 10.3390/polym12061400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/19/2022] Open
Abstract
Electrospun polycaprolactone:gelatin (PCL:GT) fibre scaffolds are widely employed in the field of tissue implants. Here, the orientation of fibres plays an important role in regard to implantation due to the impact on the mechanical properties. Likewise, the orientation of collagen fibres in skin tissue is relevant for dermatology. State-of-the-art fibre orientation measurement methods like electron microscopy are time consuming and destructive. In this work, we demonstrate polarimetry as a non-invasive approach and evaluate its potential by measuring the Mueller matrix (MM) of gelatin and collagen containing samples as simple skin tissue phantoms. We demonstrate that it is possible to determine the orientation of PCL:GT fibre scaffolds within one MM measurement. Furthermore, we determine the structural orientation in collagen film samples. Currently, the diagnosis of skin diseases is often performed by image analysis or histopathology respectively, which are either subjective or invasive. The method presented, here, provides an interesting alternative approach for such investigations. Our findings indicate that the orientation of collagen fibres within skin lesions might be detectable by MM measurements in the future, which is of interest for skin diagnostics, and will be further investigated during the next step.
Collapse
Affiliation(s)
- Dierk Fricke
- Hannover Centre for Optical Technologies (HOT), Leibniz University Hannover, 30167 Hannover, Germany; (L.J.); (M.W.); (B.W.R.)
- Correspondence:
| | - Alexander Becker
- Institute for Multiphase Processes (IMP), Leibniz University Hannover, 30167 Hannover, Germany; (A.B.); (S.K.); (B.G.)
- Implant Research and Development (NIFE), Lower Saxony Centre for Biomedical Engineering, 30625 Hannover, Germany
| | - Annice Heratizadeh
- Hannover Medical School, Department of Dermatology and Allergy, 30625 Hannover, Germany; (A.H.); (T.W.)
| | - Sara Knigge
- Institute for Multiphase Processes (IMP), Leibniz University Hannover, 30167 Hannover, Germany; (A.B.); (S.K.); (B.G.)
- Implant Research and Development (NIFE), Lower Saxony Centre for Biomedical Engineering, 30625 Hannover, Germany
| | - Lennart Jütte
- Hannover Centre for Optical Technologies (HOT), Leibniz University Hannover, 30167 Hannover, Germany; (L.J.); (M.W.); (B.W.R.)
| | - Merve Wollweber
- Hannover Centre for Optical Technologies (HOT), Leibniz University Hannover, 30167 Hannover, Germany; (L.J.); (M.W.); (B.W.R.)
- Laser Zentrum Hannover e.V., 30419 Hannover, Germany
| | - Thomas Werfel
- Hannover Medical School, Department of Dermatology and Allergy, 30625 Hannover, Germany; (A.H.); (T.W.)
| | - Bernhard Wilhelm Roth
- Hannover Centre for Optical Technologies (HOT), Leibniz University Hannover, 30167 Hannover, Germany; (L.J.); (M.W.); (B.W.R.)
- Cluster of Excellence PhoenixD, Leibniz University Hannover, 30167 Hannover, Germany
| | - Birgit Glasmacher
- Institute for Multiphase Processes (IMP), Leibniz University Hannover, 30167 Hannover, Germany; (A.B.); (S.K.); (B.G.)
- Implant Research and Development (NIFE), Lower Saxony Centre for Biomedical Engineering, 30625 Hannover, Germany
| |
Collapse
|