1
|
Organosilicon Fluorescent Materials. Polymers (Basel) 2023; 15:polym15020332. [PMID: 36679212 PMCID: PMC9862885 DOI: 10.3390/polym15020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/23/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
In the past few decades, organosilicon fluorescent materials have attracted great attention in the field of fluorescent materials not only due to their abundant and flexible structures, but also because of their intriguing fluorescence properties, distinct from silicon-free fluorescent materials. Considering their unique properties, they have found broad application prospects in the fields of chemosensor, bioimaging, light-emitting diodes, etc. However, a comprehensive review focusing on this field, from the perspective of their catalogs and applications, is still absent. In this review, organosilicon fluorescent materials are classified into two main types, organosilicon small molecules and polymers. The former includes fluorescent aryl silanes and siloxanes, and the latter are mainly fluorescent polysiloxanes. Their synthesis and applications are summarized. In particular, the function of silicon atoms in fluorescent materials is introduced. Finally, the development trend of organosilicon fluorescent materials is prospected.
Collapse
|
2
|
Ding S, Zhao S, Gan X, Sun A, Xia Y, Liu Y. Design of Fluorescent Hybrid Materials Based on POSS for Sensing Applications. Molecules 2022; 27:3137. [PMID: 35630610 PMCID: PMC9146672 DOI: 10.3390/molecules27103137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 02/05/2023] Open
Abstract
Polyhedral oligomeric silsesquioxane (POSS) has a nanoscale silicon core and eight organic functional groups on the surface, with sizes from 0.7 to 1.5 nm. The three-dimensional nanostructures of POSS can be used to build all types of hybrid materials with specific performance and controllable nanostructures. The applications of POSS-based fluorescent materials have spread across various fields. In particular, the employment of POSS-based fluorescent materials in sensing application can achieve high sensitivity, selectivity, and stability. As a result, POSS-based fluorescent materials are attracting increasing attention due to their fascinating vistas, including unique structural features, easy fabrication, and tunable optical properties by molecular design. Here, we summarize the current available POSS-based fluorescent materials from design to sensing applications. In the design section, we introduce synthetic strategies and structures of the functionalized POSS-based fluorescent materials, as well as photophysical properties. In the application section, the typical POSS-based fluorescent materials used for the detection of various target objects are summarized with selected examples to elaborate on their wide applications.
Collapse
Affiliation(s)
- Sha Ding
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (S.Z.); (X.G.); (A.S.)
| | - Shuai Zhao
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (S.Z.); (X.G.); (A.S.)
| | - Xingyue Gan
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (S.Z.); (X.G.); (A.S.)
| | - Aokui Sun
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (S.Z.); (X.G.); (A.S.)
| | - Yong Xia
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (S.Z.); (X.G.); (A.S.)
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yuejun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (S.Z.); (X.G.); (A.S.)
| |
Collapse
|
3
|
Lv Z, Chen Z, Feng S, Wang D, Liu H. A sulfur-containing fluorescent hybrid porous polymer for selective detection and adsorption of Hg 2+ ions. Polym Chem 2022. [DOI: 10.1039/d2py00077f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A dual-function material, that is, a sulfur-containing fluorescent hybrid porous polymer, has been simply prepared and utilized to simultaneously detect and capture Hg2+ with high efficiency and selectivity.
Collapse
Affiliation(s)
- Zhuo Lv
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Zixu Chen
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Shengyu Feng
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dengxu Wang
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Hongzhi Liu
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
4
|
Mrzygłód A, Kubicki M, Dudziec B. Vinyl- and chloromethyl-substituted mono-T 8 and double-decker silsesquioxanes as specific cores to low generation dendritic systems. Dalton Trans 2021; 51:1144-1149. [PMID: 34939635 DOI: 10.1039/d1dt04012j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the series of G1 and G1.5 dendritic systems with mono-T8 SQs and DDSQ as specific types of dendron and dendrimer cores, respectively. The trivinyl- and tri(chloromethyl)-derivatives were obtained via hydrolytic condensation followed by the hydrosilylation reaction, optimized to yield selectively β-products. Their structures were confirmed by spectroscopic and XRD analyses. It is the first example of double-decker SQs used as cores for the construction of a low generation of dendrimer featuring specific dumbbell frameworks expanding in two or four directions.
Collapse
Affiliation(s)
- Aleksandra Mrzygłód
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland. .,Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| | - Maciej Kubicki
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland.
| | - Beata Dudziec
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 8, 61-614 Poznan, Poland. .,Centre for Advanced Technologies, Adam Mickiewicz University in Poznan, Uniwersytetu Poznańskiego 10, 61-614 Poznan, Poland
| |
Collapse
|
5
|
Abdillah A, Sonawane PM, Kim D, Mametov D, Shimodaira S, Park Y, Churchill DG. Discussions of Fluorescence in Selenium Chemistry: Recently Reported Probes, Particles, and a Clearer Biological Knowledge. Molecules 2021; 26:692. [PMID: 33525729 PMCID: PMC7866183 DOI: 10.3390/molecules26030692] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
In this review from literature appearing over about the past 5 years, we focus on selected selenide reports and related chemistry; we aimed for a digestible, relevant, review intended to be usefully interconnected within the realm of fluorescence and selenium chemistry. Tellurium is mentioned where relevant. Topics include selenium in physics and surfaces, nanoscience, sensing and fluorescence, quantum dots and nanoparticles, Au and oxide nanoparticles quantum dot based, coatings and catalyst poisons, thin film, and aspects of solar energy conversion. Chemosensing is covered, whether small molecule or nanoparticle based, relating to metal ion analytes, H2S, as well as analyte sulfane (biothiols-including glutathione). We cover recent reports of probing and fluorescence when they deal with redox biology aspects. Selenium in therapeutics, medicinal chemistry and skeleton cores is covered. Selenium serves as a constituent for some small molecule sensors and probes. Typically, the selenium is part of the reactive, or active site of the probe; in other cases, it is featured as the analyte, either as a reduced or oxidized form of selenium. Free radicals and ROS are also mentioned; aggregation strategies are treated in some places. Also, the relationship between reduced selenium and oxidized selenium is developed.
Collapse
Affiliation(s)
- Ariq Abdillah
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Prasad M. Sonawane
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Donghyeon Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Dooronbek Mametov
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Shingo Shimodaira
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Yunseon Park
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - David G. Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering), Daejeon 34141, Korea
| |
Collapse
|
6
|
Calabrese C, Aprile C, Gruttadauria M, Giacalone F. POSS nanostructures in catalysis. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01407a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this review we highlight the use of appealing POSS-based nanostructures for both homogeneous and heterogeneous catalytic applications.
Collapse
Affiliation(s)
- Carla Calabrese
- Department of Biological
- Chemical and Pharmaceutical Sciences and Technologies
- University of Palermo
- Palermo
- Italy
| | | | - Michelangelo Gruttadauria
- Department of Biological
- Chemical and Pharmaceutical Sciences and Technologies
- University of Palermo
- Palermo
- Italy
| | - Francesco Giacalone
- Department of Biological
- Chemical and Pharmaceutical Sciences and Technologies
- University of Palermo
- Palermo
- Italy
| |
Collapse
|