1
|
Wanniarachchi PC, Upul Kumarasinghe KG, Jayathilake C. Recent advancements in chemosensors for the detection of food spoilage. Food Chem 2024; 436:137733. [PMID: 37862988 DOI: 10.1016/j.foodchem.2023.137733] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 07/10/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
The need for reliable sensors has become a major requirement to confirm the quality and safety of food commodities. Chemosensors are promising sensing tools to identify contaminants and food spoilage to ensure food safety. Chemosensing materials are evolving and becoming potential mechanisms to enable onsite and real-time monitoring of food safety. This review summarizes the information about the basic four types of chemosensors (colorimetric, optical, electrochemical, and piezoelectric) employed in the food sector, the latest advancements in the development of chemo-sensing mechanisms, and their food applications, with special emphasis on the future outlook of them. In this review, we discuss the novel chemosensors developed from the year 2018 to 2022 to detect spoilage in some common types of food like fish, meat, milk, cheese and soy sauce. This work will provide a fundamental step toward further development and innovations of chemosensors targeting different arenas in the food industry.
Collapse
Affiliation(s)
| | - K G Upul Kumarasinghe
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Chathuni Jayathilake
- School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| |
Collapse
|
4
|
Lahcen A, Surya SG, Beduk T, Vijjapu MT, Lamaoui A, Durmus C, Timur S, Shekhah O, Mani V, Amine A, Eddaoudi M, Salama KN. Metal-Organic Frameworks Meet Molecularly Imprinted Polymers: Insights and Prospects for Sensor Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49399-49424. [PMID: 36315467 PMCID: PMC9650679 DOI: 10.1021/acsami.2c12842] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/06/2022] [Indexed: 05/12/2023]
Abstract
The use of porous materials as the core for synthesizing molecularly imprinted polymers (MIPs) adds significant value to the resulting sensing system. This review covers in detail the current progress and achievements regarding the synergistic combination of MIPs and porous materials, namely metal/covalent-organic frameworks (MOFs/COFs), including the application of such frameworks in the development of upgraded sensor platforms. The different processes involved in the synthesis of MOF/COF-MIPs are outlined, along with their intrinsic properties. Special attention is paid to debriefing the impact of the morphological changes that occur through the synergistic combination compared to those that occur due to the individual entities. Thereafter, the strategies used for building the sensors, as well as the transduction modes, are overviewed and discussed. This is followed by a full description of research advances for various types of MOF/COF-MIP-based (bio)sensors and their applications in the fields of environmental monitoring, food safety, and pharmaceutical analysis. Finally, the challenges/drawbacks, as well as the prospects of this research field, are discussed in detail.
Collapse
Affiliation(s)
- Abdellatif
Ait Lahcen
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Sandeep G. Surya
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Tutku Beduk
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Mani Teja Vijjapu
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Abderrahman Lamaoui
- Chemical
Analysis and Biosensors Group, Laboratory of Process Engineering and
Environment, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia99999, Morocco
| | - Ceren Durmus
- Department
of Biochemistry, Faculty of Science, Ege
University, 35100Bornova, Izmir, Turkey
| | - Suna Timur
- Department
of Biochemistry, Faculty of Science, Ege
University, 35100Bornova, Izmir, Turkey
| | - Osama Shekhah
- Functional
Materials Design, Discovery and Development (FMD3) Research Group,
Advanced Membranes and Porous Materials Center (AMPMC), Division of
Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Veerappan Mani
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| | - Aziz Amine
- Chemical
Analysis and Biosensors Group, Laboratory of Process Engineering and
Environment, Faculty of Science and Techniques, Hassan II University of Casablanca, B.P. 146, Mohammedia99999, Morocco
| | - Mohamed Eddaoudi
- Functional
Materials Design, Discovery and Development (FMD3) Research Group,
Advanced Membranes and Porous Materials Center (AMPMC), Division of
Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal23955-6900, Saudi Arabia
| | - Khaled Nabil Salama
- Sensors
Lab, Advanced Membranes and Porous Materials Center (AMPMC), Computer,
Electrical, and Mathematical Science and Engineering (CEMSE) Division, King Abdullah University of Science and Technology
(KAUST), Thuwal23955-6900, Saudi Arabia
| |
Collapse
|
6
|
Liu J, Cai X, Liu J, Liang D, Chen K, Tang S, Xu B. Study on the Preparation of Estrone Molecularly Imprinted Polymers and Their Application in a Quartz Crystal Microbalance Sensor via a Computer-Assisted Design. Int J Mol Sci 2022; 23:ijms23105758. [PMID: 35628568 PMCID: PMC9147090 DOI: 10.3390/ijms23105758] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/22/2022] Open
Abstract
Computer simulations are widely used for the selection of conditions for the synthesis of molecularly imprinted polymers and can rapidly reduce the experimental cycle time and save labor and materials. In this paper, estrone molecularly imprinted polymers (E1-MIPs) are designed at the M062X/6-311+G(d,p) level with itaconic acid (IA) as the functional monomer. The imprinted molar ratio between E1 and IA was optimized, cross-linkers and solvents were screened, and the nature of interactions between E1 and IA was explored. The simulated results showed that pentaerythritol triacrylate was the best cross-linker. Meanwhile, when the imprinted molar ratio between E1 and IA was 1:4, the E1–IA complex had the largest amount of hydrogen bonds, the lowest binding energy, and the strongest stability. Using the simulation results as guidance, the E1-MIPs were prepared to modify the electrons of a quartz crystal microbalance (QCM) sensor. The experimental studies showed that the E1-MIPs-QCM sensor had the highest adsorption capacity to E1 in comparison with their analogues, and the lowest detection value of the sensor was 16.00 μg/L. The computer simulations and experimental studies could provide guidance for synthesize novel E1-MIPs materials. It also could provide important references and directions for the application of E1-MIPs.
Collapse
Affiliation(s)
- Jin Liu
- College of Resources and Environment, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (J.L.); (X.C.); (D.L.)
| | - Xuhong Cai
- College of Resources and Environment, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (J.L.); (X.C.); (D.L.)
| | - Junbo Liu
- College of Resources and Environment, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (J.L.); (X.C.); (D.L.)
- Correspondence: (J.L.); (S.T.); Tel.: +86-0431-84533522 (J.L.); +86-0431-84532887 (S.T.)
| | - Dadong Liang
- College of Resources and Environment, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (J.L.); (X.C.); (D.L.)
| | - Kaiyin Chen
- Jilin Guangxin Engineering Technology Consulting Co., Ltd., Changchun 130022, China;
| | - Shanshan Tang
- College of Resources and Environment, Key Laboratory of Straw Comprehensive Utilization and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (J.L.); (X.C.); (D.L.)
- Correspondence: (J.L.); (S.T.); Tel.: +86-0431-84533522 (J.L.); +86-0431-84532887 (S.T.)
| | - Bao Xu
- Institute of Mathematica, Jilin Normal University, Siping 136000, China;
| |
Collapse
|
7
|
Miller K, Reichert CL, Schmid M. Biogenic Amine Detection Systems for Intelligent Packaging Concepts: Meat and Meat Products. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1961270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- K. Miller
- Department of Life Sciences, Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Sigmaringen, Germany
| | - C. L. Reichert
- Department of Life Sciences, Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Sigmaringen, Germany
| | - M. Schmid
- Department of Life Sciences, Sustainable Packaging Institute SPI, Faculty of Life Sciences, Albstadt-Sigmaringen University, Sigmaringen, Germany
| |
Collapse
|
8
|
Du Q, Zhang Y, Yu L, He H. Surface molecularly imprinted polymers fabricated by differential UV-vis spectra and reverse prediction method for the enrichment and determination of sterigmatocystin. Food Chem 2021; 367:130715. [PMID: 34364144 DOI: 10.1016/j.foodchem.2021.130715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 07/08/2021] [Accepted: 07/25/2021] [Indexed: 11/26/2022]
Abstract
A novel magnetic molecularly imprinted polymers (MMIPs) with a new functional monomer Triallyl isocyanurate was synthesized successfully to enrich and detect sterigmatocystin (STG) in wheat samples. The differential UV-vis spectra and the reverse prediction method were selected to achieve the optimal synthesis conditions of the MMIPs, which were characterized well. The adsorption experiment showed that MMIPs have high selectivity and sensitivity. A magnetic solid phase extraction combined with high performance liquid chromatography (MSPE-HPLC) method based on the MMIPs was successfully established with the optimal extraction condition. The linear range and RSD were 1.8-25 ng·g-1 and 2.6-4.1%, respectively. The recovery of this method was 87.6-96.9% and the limit of detection (LOD) was 0.63 ng·g-1. The excellent sensitivity and selectivity of this method were confirmed by experiment of the extraction and detection of STG in wheat extracts. This work extends the use of molecular imprinting in mycotoxins applications.
Collapse
Affiliation(s)
- Qiuzheng Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Yan Zhang
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Lili Yu
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Hua He
- Department of Analytical Chemistry, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|