1
|
Joseph J, Baby HM, Quintero JR, Kenney D, Mebratu YA, Bhatia E, Shah P, Swain K, Lee D, Kaur S, Li XL, Mwangi J, Snapper O, Nair R, Agus E, Ranganathan S, Kage J, Gao J, Luo JN, Yu A, Park D, Douam F, Tesfaigzi Y, Karp JM, Joshi N. Toward a Radically Simple Multi-Modal Nasal Spray for Preventing Respiratory Infections. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2406348. [PMID: 39318086 DOI: 10.1002/adma.202406348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/18/2024] [Indexed: 09/26/2024]
Abstract
Nasal sprays for pre-exposure prophylaxis against respiratory infections show limited protection (20-70%), largely due to their single mechanism of action-either neutralizing pathogens or blocking their entry at the nasal lining, and a failure to maximize the capture of respiratory droplets, allowing them to potentially rebound and reach deeper airways. This report introduces the Pathogen Capture and Neutralizing Spray (PCANS), which utilizes a multi-modal approach to enhance efficacy. PCANS coats the nasal cavity, capturing large respiratory droplets from the air, and serving as a physical barrier against a broad spectrum of viruses and bacteria, while rapidly neutralizing them with over 99.99% effectiveness. The formulation consists of excipients identified from the FDA's Inactive Ingredient Database and Generally Recognized as Safe list to maximize efficacy for each step in the multi-modal approach. PCANS demonstrates nasal retention for up to 8 hours in mice. In a severe Influenza A mouse model, a single pre-exposure dose of PCANS leads to a >99.99% reduction in lung viral titer and ensures 100% survival, compared to 0% in the control group. PCANS suppresses pathological manifestations and offers protection for at least 4 hours. This data suggest PCANS as a promising daily-use prophylactic against respiratory infections.
Collapse
Affiliation(s)
- John Joseph
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Helna Mary Baby
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Joselyn Rojas Quintero
- Harvard Medical School, Boston, MA, 02115, USA
- Division of Pulmonology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Devin Kenney
- National Emerging Infectious Diseases Laboratories, Department of Microbiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Yohannes A Mebratu
- Harvard Medical School, Boston, MA, 02115, USA
- Division of Pulmonology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Eshant Bhatia
- Indian Institute of Technology, Mumbai, 400076, India
| | - Purna Shah
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Kabir Swain
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Dongtak Lee
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Shahdeep Kaur
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Xiang-Ling Li
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - John Mwangi
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Olivia Snapper
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Remya Nair
- Harvard Medical School, Boston, MA, 02115, USA
| | - Eli Agus
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Sruthi Ranganathan
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Julian Kage
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Jingjing Gao
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - James N Luo
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Anthony Yu
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Dongsung Park
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Florian Douam
- National Emerging Infectious Diseases Laboratories, Department of Microbiology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Yohannes Tesfaigzi
- Harvard Medical School, Boston, MA, 02115, USA
- Division of Pulmonology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Jeffrey M Karp
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Broad Institute, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Nitin Joshi
- Center for Accelerated Medical Innovation, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
2
|
Abalymov A, Pinchasik BE, Akasov RA, Lomova M, Parakhonskiy BV. Strategies for Anisotropic Fibrillar Hydrogels: Design, Cell Alignment, and Applications in Tissue Engineering. Biomacromolecules 2023; 24:4532-4552. [PMID: 37812143 DOI: 10.1021/acs.biomac.3c00503] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Efficient cellular alignment in biomaterials presents a considerable challenge, demanding the refinement of appropriate material morphologies, while ensuring effective cell-surface interactions. To address this, biomaterials are continuously researched with diverse coatings, hydrogels, and polymeric surfaces. In this context, we investigate the influence of physicochemical parameters on the architecture of fibrillar hydrogels that significantly orient the topography of flexible hydrogel substrates, thereby fostering cellular adhesion and spatial organization. Our Review comprehensively assesses various techniques for aligning polymer fibrils within hydrogels, specifically interventions applied during and after the cross-linking process. These methodologies include mechanical strains, precise temperature modulation, controlled fluidic dynamics, and chemical modulators, as well as the use of magnetic and electric fields. We highlight the intrinsic appeal of these methodologies in fabricating cell-aligning interfaces and discuss their potential implications within the fields of biomaterials and tissue engineering, particularly concerning the pursuit of optimal cellular alignment.
Collapse
Affiliation(s)
- Anatolii Abalymov
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Bat-El Pinchasik
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, 69978 Tel-Aviv, Israel
| | - Roman A Akasov
- Sechenov University and Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, 101000 Moscow, Russia
| | - Maria Lomova
- Science Medical Center, Saratov State University, 410012 Saratov, Russia
| | - Bogdan V Parakhonskiy
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Mastrangelo R, Resta C, Carretti E, Fratini E, Baglioni P. Sponge-like Cryogels from Liquid-Liquid Phase Separation: Structure, Porosity, and Diffusional Gel Properties. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46428-46439. [PMID: 37515546 PMCID: PMC10561144 DOI: 10.1021/acsami.3c03239] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
Macroporous gels find application in several scientific fields, ranging from art restoration to wastewater filtration or cell entrapment. In this work, two-component sponge-like cryogels are challenged to assess their cleaning performances and to investigate how pores size and connectivity affect physico-chemical properties. The gels were obtained through a freeze-thaw process, exploiting a spontaneous polymer-polymer phase-separation occurring in the pre-gel solution. During the freezing step, a highly hydrolyzed polyvinyl alcohol (H-PVA) forms the hydrogel walls. The secondary components, namely a partially hydrolyzed polyvinyl alcohol (L-PVA) or polyvinyl pyrrolidone (PVP), act as modular porogens, being partially extracted during gel washing. H-PVA/L-PVA and H-PVA/PVP mixtures were studied by confocal laser scanning microscopy to unveil sols and gels morphology at the micron-scale, while small angle X-ray scattering was used to get insights about characteristic dimensions at the nanoscale. The gelation mechanism was investigated through rheology measurements, and the characteristic exponents were compared to De Gennes' scaling laws gathered from percolation. In the field of art conservation, these sponge-like gels are ideal systems for the cleaning of artistic painted surfaces. Their interconnected pores allow the diffusion of cleaning fluids at the painted interface, facilitating dirt uptake and/or detachment. This study uncovered a direct relationship linking a gel's cleaning performance to its apparent tortuosity. These findings can pave the way to fine-tuning systems with enhanced cleaning abilities, not restricted to the restoration of irreplaceable priceless works of art, but with possible application in diverse research fields.
Collapse
Affiliation(s)
- Rosangela Mastrangelo
- Department of Chemistry and CSGI, University of Florence, via della Lastruccia, 3, Sesto Fiorentino, Florence 50019, Italy
| | - Claudio Resta
- Department of Chemistry and CSGI, University of Florence, via della Lastruccia, 3, Sesto Fiorentino, Florence 50019, Italy
| | - Emiliano Carretti
- Department of Chemistry and CSGI, University of Florence, via della Lastruccia, 3, Sesto Fiorentino, Florence 50019, Italy
| | - Emiliano Fratini
- Department of Chemistry and CSGI, University of Florence, via della Lastruccia, 3, Sesto Fiorentino, Florence 50019, Italy
| | - Piero Baglioni
- Department of Chemistry and CSGI, University of Florence, via della Lastruccia, 3, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
4
|
Bakar AJBA, Azam NSM, Sevakumaran V, Ismail WIBW, Razali MH, Razak SIBA, Amin KAM. Effectiveness of collagen and gatifloxacin in improving the healing and antibacterial activities of gellan gum hydrogel films as dressing materials. Int J Biol Macromol 2023; 245:125494. [PMID: 37348586 DOI: 10.1016/j.ijbiomac.2023.125494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 06/04/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
The demand for advanced wound care products is rapidly increasing nowadays. In this study, gellan gum/collagen (GG/C) hydrogel films containing gatifloxacin (GAT) were developed to investigate their properties as wound dressing materials. ATR-FTIR, swelling, water content, water vapor transmission rate (WVTR), and thermal properties were investigated. The mechanical properties of the materials were tested in dry and wet conditions to understand the performance of the materials after exposure to wound exudate. Drug release by Franz diffusion was measured with all samples showing 100 % cumulative drug release after 40 min. Strong antibacterial activities against Staphylococcus aureus and Staphylococcus epidermis were observed for Gram-positive bacteria, while Escherichia coli and Pseudomonas aeruginosa were observed for Gram-negative bacteria. The in-vivo cytotoxicity of GG/C-GAT was assessed by wound contraction in rats, which was 95 % for GG/C-GAT01. Hematoxylin and eosin and Masson's trichrome staining revealed the appearance of fresh full epidermis and granulation tissue, indicating that all wounds had passed through the proliferation phase. The results demonstrate the promising properties of the materials to be used as dressing materials.
Collapse
Affiliation(s)
| | - Nurul Shahirah Mohd Azam
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Terengganu, Malaysia
| | - Vigneswari Sevakumaran
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Terengganu, Malaysia
| | - Wan Iryani Bt Wan Ismail
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Terengganu, Malaysia
| | - Mohd Hasmizam Razali
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Terengganu, Malaysia
| | - Saiful Izwan Bin Abdul Razak
- BioInspired Device and Tissue Engineering Research Group, Faculty of Engineering, School of Biomedical Engineering and Health Sciences, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia
| | - Khairul Anuar Mat Amin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Terengganu, Malaysia.
| |
Collapse
|
5
|
Moreira HR, Rodrigues DB, Freitas-Ribeiro S, da Silva LP, Morais ADS, Jarnalo M, Horta R, Reis RL, Pirraco RP, Marques AP. Spongy-like hydrogels prevascularization with the adipose tissue vascular fraction delays cutaneous wound healing by sustaining inflammatory cell influx. Mater Today Bio 2022; 17:100496. [PMID: 36420053 PMCID: PMC9677215 DOI: 10.1016/j.mtbio.2022.100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022] Open
Abstract
In vitro prevascularization is one of the most explored approaches to foster engineered tissue vascularization. We previously demonstrated a benefit in tissue neovascularization by using integrin-specific biomaterials prevascularized by stromal vascular fraction (SVF) cells, which triggered vasculogenesis in the absence of extrinsic growth factors. SVF cells are also associated to biological processes important in cutaneous wound healing. Thus, we aimed to investigate whether in vitro construct prevascularization with SVF accelerates the healing cascade by fostering early vascularization vis-à-vis SVF seeding prior to implantation. Prevascularized constructs delayed re-epithelization of full-thickness mice wounds compared to both non-prevascularized and control (no SVF) groups. Our results suggest this delay is due to a persistent inflammation as indicated by a significantly lower M2(CD163+)/M1(CD86+) macrophage subtype ratio. Moreover, a slower transition from the inflammatory to the proliferative phase of the healing was confirmed by reduced extracellular matrix deposition and increased presence of thick collagen fibers from early time-points, suggesting the prevalence of fiber crosslinking in relation to neodeposition. Overall, while prevascularization potentiates inflammatory cell influx, which negatively impacts the cutaneous wound healing cascade, an effective wound healing was guaranteed in non-prevascularized SVF cell-containing spongy-like hydrogels confirming that the SVF can have enhanced efficacy.
Collapse
Affiliation(s)
- Helena R. Moreira
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Zona Industrial da Gandra, Guimaraes, 4805-017, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimaraes, 4805-017, Portugal
| | - Daniel B. Rodrigues
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Zona Industrial da Gandra, Guimaraes, 4805-017, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimaraes, 4805-017, Portugal
| | - Sara Freitas-Ribeiro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Zona Industrial da Gandra, Guimaraes, 4805-017, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimaraes, 4805-017, Portugal
| | - Lucília P. da Silva
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Zona Industrial da Gandra, Guimaraes, 4805-017, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimaraes, 4805-017, Portugal
| | - Alain da S. Morais
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Zona Industrial da Gandra, Guimaraes, 4805-017, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimaraes, 4805-017, Portugal
| | - Mariana Jarnalo
- Department of Plastic and Reconstructive Surgery, And Burn Unity, Centro Hospitalar de São João, Porto, Portugal
- Faculty of Medicine - University of Porto, Portugal
| | - Ricardo Horta
- Department of Plastic and Reconstructive Surgery, And Burn Unity, Centro Hospitalar de São João, Porto, Portugal
- Faculty of Medicine - University of Porto, Portugal
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Zona Industrial da Gandra, Guimaraes, 4805-017, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimaraes, 4805-017, Portugal
| | - Rogério P. Pirraco
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Zona Industrial da Gandra, Guimaraes, 4805-017, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimaraes, 4805-017, Portugal
| | - Alexandra P. Marques
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark – Zona Industrial da Gandra, Guimaraes, 4805-017, Portugal
- ICVS/3B's – PT Government Associate Laboratory, Braga/Guimaraes, 4805-017, Portugal
| |
Collapse
|
6
|
Integrin-specific hydrogels for growth factor-free vasculogenesis. NPJ Regen Med 2022; 7:57. [PMID: 36167724 PMCID: PMC9515164 DOI: 10.1038/s41536-022-00253-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/12/2022] [Indexed: 11/30/2022] Open
Abstract
Integrin-binding biomaterials have been extensively evaluated for their capacity to enable de novo formation of capillary-like structures/vessels, ultimately supporting neovascularization in vivo. Yet, the role of integrins as vascular initiators in engineered materials is still not well understood. Here, we show that αvβ3 integrin-specific 3D matrices were able to retain PECAM1+ cells from the stromal vascular fraction (SVF) of adipose tissue, triggering vasculogenesis in vitro in the absence of extrinsic growth factors. Our results suggest that αvβ3-RGD-driven signaling in the formation of capillary-like structures prevents the activation of the caspase 8 pathway and activates the FAK/paxillin pathway, both responsible for endothelial cells (ECs) survival and migration. We also show that prevascularized αvβ3 integrin-specific constructs inosculate with the host vascular system fostering in vivo neovascularization. Overall, this work demonstrates the ability of the biomaterial to trigger vasculogenesis in an integrin-specific manner, by activating essential pathways for EC survival and migration within a self-regulatory growth factor microenvironment. This strategy represents an improvement to current vascularization routes for Tissue Engineering constructs, potentially enhancing their clinical applicability.
Collapse
|
7
|
Reczyńska-Kolman K, Hartman K, Kwiecień K, Brzychczy-Włoch M, Pamuła E. Composites Based on Gellan Gum, Alginate and Nisin-Enriched Lipid Nanoparticles for the Treatment of Infected Wounds. Int J Mol Sci 2021; 23:ijms23010321. [PMID: 35008746 PMCID: PMC8745171 DOI: 10.3390/ijms23010321] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 12/31/2022] Open
Abstract
Due to growing antimicrobial resistance to antibiotics, novel methods of treatment of infected wounds are being searched for. The aim of this research was to develop a composite wound dressing based on natural polysaccharides, i.e., gellan gum (GG) and a mixture of GG and alginate (GG/Alg), containing lipid nanoparticles loaded with antibacterial peptide-nisin (NSN). NSN-loaded stearic acid-based nanoparticles (NP_NSN) were spherical with an average particle size of around 300 nm and were cytocompatible with L929 fibroblasts for up to 500 µg/mL. GG and GG/Alg sponges containing either free NSN (GG + NSN and GG/Alg + NSN) or NP_NSN (GG + NP_NSN and GG/Alg + NP_NSN) were highly porous with a high swelling capacity (swelling ratio above 2000%). Encapsulation of NSN within lipid nanoparticles significantly slowed down NSN release from GG-based samples for up to 24 h (as compared to GG + NSN). The most effective antimicrobial activity against Gram-positive Streptococcus pyogenes was observed for GG + NP_NSN, while in GG/Alg it was decreased by interactions between NSN and Alg, leading to NSN retention within the hydrogel matrix. All materials, except GG/Alg + NP_NSN, were cytocompatible with L929 fibroblasts and did not cause an observable delay in wound healing. We believe that the developed materials are promising for wound healing application and the treatment of bacterial infections in wounds.
Collapse
Affiliation(s)
- Katarzyna Reczyńska-Kolman
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland;
- Correspondence: (K.R.-K.); (E.P.); Tel.: +48-126-172-338 (K.R.-K.); +48-12-617-44-48 (E.P.)
| | - Kinga Hartman
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland;
| | - Konrad Kwiecień
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland;
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Faculty of Medicine, Medical College, Jagiellonian University, Ul. Czysta 18, 31-121 Kraków, Poland;
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland;
- Correspondence: (K.R.-K.); (E.P.); Tel.: +48-126-172-338 (K.R.-K.); +48-12-617-44-48 (E.P.)
| |
Collapse
|
8
|
Canadas RF, Costa JB, Mao Z, Gao C, Demirci U, Reis RL, Marques AP, Oliveira JM. 3DICE coding matrix multidirectional macro-architecture modulates cell organization, shape, and co-cultures endothelization network. Biomaterials 2021; 277:121112. [PMID: 34488122 DOI: 10.1016/j.biomaterials.2021.121112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/31/2021] [Accepted: 08/27/2021] [Indexed: 12/31/2022]
Abstract
Natural extracellular matrix governs cells providing biomechanical and biofunctional outstanding properties, despite being porous and mostly made of soft materials. Among organs, specific tissues present specialized macro-architectures. For instance, hepatic lobules present radial organization, while vascular sinusoids are branched from vertical veins, providing specific biofunctional features. Therefore, it is imperative to mimic such structures while modeling tissues. So far, there is limited capability of coupling oriented macro-structures with interconnected micro-channels in programmable long-range vertical and radial sequential orientations. Herein, a three-directional ice crystal elongation (3DICE) system is presented to code geometries in cryogels. Using 3DICE, guided ice crystals growth templates vertical and radial pores through bulky cryogels. Translucent isotropic and anisotropic architectures of radial or vertical pores are fabricated with tunable mechanical response. Furthermore, 3D combinations of vertical and radial pore orientations are coded at the centimeter scale. Cell morphological response to macro-architectures is demonstrated. The formation of endothelial segments, CYP450 activity, and osteopontin expression, as liver fibrosis biomarkers, present direct response and specific cellular organization within radial, linear, and random architectures. These results unlock the potential of ice-templating demonstrating the relevance of macro-architectures to model tissues, and broad possibilities for drug testing, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Raphaël F Canadas
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Zona Industrial da Gandra, AvePark, Barco GMR, 4805-017, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal; Tech4MED™, UPTEC, ASPRELA I, Office-Lab 0.16, Business Campus, n.° 455/461, 4200-135 Porto, Portugal.
| | - João B Costa
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Zona Industrial da Gandra, AvePark, Barco GMR, 4805-017, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA; Electrical Engineering Department by Courtesy, Stanford University, Stanford, CA, 94305, USA
| | - Rui L Reis
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Zona Industrial da Gandra, AvePark, Barco GMR, 4805-017, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Alexandra P Marques
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Zona Industrial da Gandra, AvePark, Barco GMR, 4805-017, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Zona Industrial da Gandra, AvePark, Barco GMR, 4805-017, Portugal; ICVS/3B's, PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
9
|
Evans CW, Ho D, Lee PKH, Martin AD, Chin IL, Wei Z, Li H, Atkin R, Choi YS, Norret M, Thordarson P, Iyer KS. A dendronised polymer architecture breaks the conventional inverse relationship between porosity and mechanical properties of hydrogels. Chem Commun (Camb) 2021; 57:773-776. [PMID: 33355551 DOI: 10.1039/d0cc07115c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We present a series of synthetic polymer hydrogels which break the traditional correlation between pore size and mechanical properties. The hydrogels are prepared from a dendronised polymer architecture based on a methacrylate copolymer to which poly(amido amine) dendrons are attached. Our approach will be useful in tailoring hydrogels for tissue engineering, controlled drug release, and flexible electronics.
Collapse
Affiliation(s)
- Cameron W Evans
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.
| | - Diwei Ho
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.
| | - Peter K H Lee
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.
| | - Adam D Martin
- Dementia Research Centre, Dept of Biomedical Science, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ian L Chin
- School of Human Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Zhenli Wei
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.
| | - Hua Li
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia. and Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia
| | - Marck Norret
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.
| | - Pall Thordarson
- School of Chemistry, The Australian Centre for Nanomedicine and the ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, UNSW Sydney, NSW 2052, Australia
| | - K Swaminathan Iyer
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Hwy, Crawley, WA 6009, Australia.
| |
Collapse
|