1
|
Jaiswal AK, Jose CT, Ramesh R, Nanani VK, Sadeghi K, Joshi A, Kompally K, Pathikonda G, Emady HN, Bheda B, Kavouras SA, Rykaczewski K. Simultaneous imaging of multi-pore sweat dynamics and evaporation rate measurement using wind tunnel ventilated capsule with infrared window. iScience 2024; 27:110304. [PMID: 39040057 PMCID: PMC11261446 DOI: 10.1016/j.isci.2024.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/20/2024] [Accepted: 06/16/2024] [Indexed: 07/24/2024] Open
Abstract
Sweat evaporation is critical to human thermoregulation, but current understanding of the process on 20 μm to 2 cm scale is limited. To this end, we introduce a wind-tunnel-shaped ventilated capsule with an infrared window for simultaneous infrared sweat imaging and evaporation rate measurement. Implementing the capsule in pilot human subject tests suggests that the common assumption of sweat being an isothermal film is only valid when the evaporation rate is low and sweat forms puddles on the skin. Before transitioning to this filmwise mode, sweating occurs in cyclic dropwise mode, displaying a 3x higher mass transfer coefficient in the same conditions. Imaging highlighted distinct phenomena occurring during and between these modes including out-of-duct evaporation, pulsating droplets, temporary and eventually lasting crevice filling, and individual drop-to-film spreading. In all, sweat evaporation is an impactful area that our results show is ripe for exploration, which can be achieved quantitatively using the introduced platform.
Collapse
Affiliation(s)
- Ankush K. Jaiswal
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
- Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, AZ 85287, USA
| | - Cibin T. Jose
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Rajesh Ramesh
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Vinay K. Nanani
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Kambiz Sadeghi
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
- Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, AZ 85287, USA
| | - Ankit Joshi
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
- Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, AZ 85287, USA
| | - Krishna Kompally
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Gokul Pathikonda
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Heather N. Emady
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Bhaumik Bheda
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
| | - Stavros A. Kavouras
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA
| | - Konrad Rykaczewski
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, USA
- Julie Ann Wrigley Global Futures Laboratory, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
2
|
Alvi MH, Maqsood H, Iftikhar F, Akhtar S, Khan MQ, Nawab Y, Kim IS. Fabrication of Multifunctional Tents Using Canvas Fabric. ACS OMEGA 2024; 9:17706-17725. [PMID: 38680368 PMCID: PMC11044260 DOI: 10.1021/acsomega.3c09249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 05/01/2024]
Abstract
Herein, this study was compiled to investigate a suitable solution for the fabrication and development of the multifunctional defense tent from previously reported research. The military always needs to protect their soldiers and equipment from detection. The advancement of infrared detection technology emphasizes the significance of infrared camouflage materials, reducing thermal emissions for various applications. Objects emit infrared radiation detectable by devices, making military targets easily identifiable. Infrared camouflage mitigates detection by lowering an object's infrared radiation, achieved by methods such as reducing surface temperature, which is crucial in designing military tents with infrared (IR) camouflage, considering water repellency and antibacterial features. Water repellency, as well as antimicrobial properties, in army tents is also important as they have to survive in different situations. All these problems should be addressed with the required properties; therefore, the authors try to introduce a new method from which multifunctional tents can be produced through economical, multifunctional, and sustainable materials that have IR protection, water repellency, ultraviolet (UV) protection, air filtration and permeability, and antimicrobial properties. There is still no tent that performs multiple functions at a time, even those functions that do not correlate with each other such as water repellency, IR protection, antimicrobial, and air permeability. So, a multifunctional tent could be the solution to all these problems having all the properties discussed above. In this study based on the literature review, authors concluded a method for the required tent for canvas fabric coated with zinc sulfide (ZnS), graphene oxide (GO), and zinc oxide (ZnO), or these materials should be incorporated in fiber formation because fiber composition has more impact. These multifunctional tents will be very beneficial due to their multifunctions like weather resistance, durability, and long life. These would help the army in their missions by concealing their soldiers and equipment from detection by cameras and providing filtered air inside the tent in case of gases or explosions. The proposed method will help to fulfill the stated and implied needs of customers.
Collapse
Affiliation(s)
- Muhammad
Abbas Haider Alvi
- Department of Textile Engineering,
School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Hira Maqsood
- Department of Textile Engineering,
School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Fatima Iftikhar
- Department of Textile Engineering,
School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Saeed Akhtar
- Department of Clothing, School of Engineering
& Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Qamar Khan
- Department of Textile Engineering,
School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Yasir Nawab
- Department of Textile Engineering,
School of Engineering & Technology, National Textile University, Faisalabad 37610, Pakistan
| | - Ick Soo Kim
- Division of Frontier Fiber, Institute
of Fiber Engineering, Interdisciplinary Cluster for Cutting Edge Research
(ICCER), Faculty of Textile Sciences, Shinshu
University, Nagano 386-8567, Japan
| |
Collapse
|
3
|
Soekoco AS, Mustafa D, Oktavian D, Bahtiar F, Martina T, Nugraha, Yuliarto B. The Potential of Double-Faced Polyester-Viscose Woven Fabric as a Porous Substrate for Direct-Coating and Multilayer Concept. Polymers (Basel) 2023; 15:4579. [PMID: 38231977 PMCID: PMC10708724 DOI: 10.3390/polym15234579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/19/2024] Open
Abstract
Textile-based sensors fabricated using the direct-coating method are the appropriate choice to meet the aspects of flexibility, non-invasiveness, and lightness for continuous monitoring of the human body. The characteristics of the sensor substrate are directly influenced by factors such as the type of weave, thread fineness, fabric density, and the type of polymeric constituent fibers. The fabric used as the sensor substrate, fabricated using the direct-coating method, must be capable of retaining the electrode paste solution, which has higher viscosity, on one surface of the fabric to avoid short circuits during the fabrication process. However, during its application, this fabric should allow the easy passage of analyte solutions with low viscosity as much as possible. Hence, an appropriate fabric construction is required to serve as the substrate for textile-based sensors to ensure the success of the fabrication process and the effectiveness of the resulting sensor's performance. The development of the structural design of the fabric to be used as a substrate for non-invasive biosensors with a multilayer concept is carried out by weaving and sewing processes utilizing polyester-viscose fibers. During the production process, variations are applied, such as weft yarn density, the characterization of wetting time, absorption rate, maximum wetted radius, spreading speed, and accumulative one-way transport index. The most suitable fabric for use as a substrate for non-invasive biosensors with a multilayer concept, such as in this research, is a fabric with a weft thread density of 70 strands per inch, along with the addition of an analyte transfer thread configuration.
Collapse
Affiliation(s)
- Asril Senoaji Soekoco
- Department of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Kota Bandung 40132, Indonesia
- Department of Textile Engineering, Politeknik STTT Bandung, Kota Bandung 40272, Indonesia; (D.M.); (D.O.); (F.B.); (T.M.)
| | - Dody Mustafa
- Department of Textile Engineering, Politeknik STTT Bandung, Kota Bandung 40272, Indonesia; (D.M.); (D.O.); (F.B.); (T.M.)
| | - Dinan Oktavian
- Department of Textile Engineering, Politeknik STTT Bandung, Kota Bandung 40272, Indonesia; (D.M.); (D.O.); (F.B.); (T.M.)
| | - Fahruk Bahtiar
- Department of Textile Engineering, Politeknik STTT Bandung, Kota Bandung 40272, Indonesia; (D.M.); (D.O.); (F.B.); (T.M.)
| | - Tina Martina
- Department of Textile Engineering, Politeknik STTT Bandung, Kota Bandung 40272, Indonesia; (D.M.); (D.O.); (F.B.); (T.M.)
| | - Nugraha
- Department of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Kota Bandung 40132, Indonesia
| | - Brian Yuliarto
- Department of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, Kota Bandung 40132, Indonesia
| |
Collapse
|
4
|
Sanders SL, Douglas LD, Sill TE, Stewart K, Pieniazek N, Li C, Walters E, Al-Hashimi M, Fang L, Davidson RD, Banerjee S. Tetrapodal textured Janus textiles for accessible menstrual health. iScience 2023; 26:108224. [PMID: 38107878 PMCID: PMC10725076 DOI: 10.1016/j.isci.2023.108224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/15/2023] [Accepted: 10/12/2023] [Indexed: 12/19/2023] Open
Abstract
Menstruating individuals without access to adequate hygiene products often improvise with alternatives that pose health risks and limit their participation in society. We describe here a menstrual hygiene product based on low-cost materials, which are integrated onto fabrics to imbue unidirectional permeability. A body-facing "Janus" fabric top layer comprising ZnO tetrapods spray-coated onto polyester mosquito netting imparts hierarchical texturation, augmenting the micron-scale texturation derived from the weave of the underlying fabric. The asymmetric coating establishes a gradient in wettability, which underpins flash spreading and unidirectional permeability. The hygiene product accommodates a variety of absorptive media, which are sandwiched between the Janus layer and a second outward-facing coated densely woven fabric. An assembled prototype demonstrates outstanding ability to wick saline solutions and a menstrual fluid simulant while outperforming a variety of commercially alternatives. The results demonstrate a versatile menstrual health product that provides a combination of dryness, discretion, washability, and safety.
Collapse
Affiliation(s)
- Sarah L. Sanders
- Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | - Lacey D. Douglas
- Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | - Tiffany E. Sill
- Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | - Kaylyn Stewart
- Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | - Noah Pieniazek
- Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | - Chenxuan Li
- Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA
| | - Eve Walters
- Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | | | - Lei Fang
- Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA
| | - Rachel D. Davidson
- Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| | - Sarbajit Banerjee
- Department of Chemistry, Texas A&M University, College Station, TX 77842-3012, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843-3003, USA
| |
Collapse
|
5
|
Impact of Fabric Construction on Adsorption and Spreading of Liquid Contaminations. MATERIALS 2022; 15:ma15061998. [PMID: 35329450 PMCID: PMC8948848 DOI: 10.3390/ma15061998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/24/2022] [Accepted: 03/05/2022] [Indexed: 12/04/2022]
Abstract
A contamination on a textile material is defined as an undesirable, local formation that deviates in appearance from the rest of the material. In this paper the relationship between the shape and surface of liquid contaminations and the firmness factor of woven fabric is investigated. The interdependence of constructional and structural parameters of raw and bleached cotton fabrics were analysed. The results show that selected contaminations are distributed differently, primarily depending on the construction characteristics of the fabric, type of contamination and hydrophilicity of cotton fabric.
Collapse
|
6
|
Kim HA. Moisture Vapor Permeability and Thermal Wear Comfort of Ecofriendly Fiber-Embedded Woven Fabrics for High-Performance Clothing. MATERIALS 2021; 14:ma14206205. [PMID: 34683797 PMCID: PMC8539243 DOI: 10.3390/ma14206205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 11/26/2022]
Abstract
This study examined the moisture vapor permeability and thermal wear comfort of ecofriendly fiber-embedded woven fabrics in terms of the yarn structure and the constituent fiber characteristics according to two measuring methods. The moisture vapor permeability measured using the upright cup (CaCl2) method (JIS L 1099A-1) was primarily dependent on the hygroscopicity of the ecofriendly constituent fibers in the yarns and partly influenced by the pore size in the fabric because of the yarn structure. On the other hand, the moisture vapor resistance measured using the sweating guarded hot plate method (ISO 11092) was governed mainly by the fabric pore size and partly by the hygroscopicity of the constituent ecofriendly fibers. The difference between the two measuring methods was attributed to the different mechanisms in the measuring method. The thermal conductivity as a measure of the thermal wear comfort of the composite yarn fabrics was governed primarily by the pore size in the fabric and partly by the thermal characteristics of the constituent fibers in the yarns. Lastly, considering market applications, the Coolmax®/Tencel sheath/core fabric appears useful for winter warm feeling clothing because of its the good breathability with low thermal conductivity. The bamboo and Coolmax®/bamboo fabrics are suitable for summer clothing with a cool feel because of their high thermal conductivity with good breathability. Overall, ecofriendly fibers (bamboo and Tencel) are of practical use for marketing environmentallyfriendly high-performance clothing.
Collapse
Affiliation(s)
- Hyun-Ah Kim
- Korea Research Institute for Fashion Industry, 45-26, Palgong-ro, Dong-gu, Daegu 41028, Korea
| |
Collapse
|
7
|
Zhou M, Li M, Xu F, Yang Y, Pei Y, Yan Y, Wu L. One-Step Covalent Surface Modification to Achieve Oil-Water Separation Performance of a Non-Fluorinated Durable Superhydrophobic Fabric. ACS OMEGA 2021; 6:24139-24146. [PMID: 34568692 PMCID: PMC8459429 DOI: 10.1021/acsomega.1c03642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Indexed: 06/13/2023]
Abstract
In this work, a durable superhydrophobic fabric was fabricated by a facile covalent surface modification strategy, in which the anchoring of 10-undecenoyl chloride (UC) onto the fabric through the esterification reaction and covalent grafting of n-dodecyl-thiol (DT) via thiol-ene click chemistry were integrated into one step. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM) measurement results demonstrated that UC and DT were covalently grafted onto the fabric surface. The formed gully-like rough structure by the grafted UC and DT on the fabric surface together with the inherent microfiber structure, combined with the grafted low-surface-energy materials of UC and DT, gave the resultant modified DT-UC@fabric superhydrophobic performance. The superhydrophobic DT-UC@fabric was used for separation of oil-water mixtures; it exhibited high separation efficiency of more than 98%. In addition, it presented excellent durability against mechanical damage; even after 100 cyclic tape-peeling and abrasion tests, the DT-UC@fabric could preserve superhydrophobic performance, which was ascribed to the formed covalent interactions between the fabric surface and the grafted UC and DT. Therefore, this work provided a facile, efficient strategy for fabricating superhydrophobic composites with excellent durability, which exhibited a promising prospect in the application of self-cleaning and oil-water separation.
Collapse
|
8
|
Poiseuille-Number-Based Kozeny–Carman Model for Computation of Pore Shape Factors on Arbitrary Cross Sections. Transp Porous Media 2021. [DOI: 10.1007/s11242-021-01592-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|