1
|
Yuan J, Pan D, Chen J, Liu Y, Yu J, Hu X, Zhan H, Wen Z. Ultrafast Na-Ion Storage in Amorphization Engineered Hollow Vanadium Oxide/MXene Nanohybrids for High-Performance Sodium-Ion Hybrid Capacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408923. [PMID: 39498669 DOI: 10.1002/adma.202408923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/14/2024] [Indexed: 11/07/2024]
Abstract
Sodium ion hybrid capacitors (SIHCs) address the high power and energy requirements in energy storage devices but face significant challenges arising from the slow kinetics and cycling instability of the anode side. Introducing atomic disorder and employing structural engineering in anode materials proves to be effective strategies for achieving rapid charge storage. Here, it is demonstrated that N-doped MXene encapsulated amorphous vanadium oxide hollow spheres (VOx@N-MXene HSs) offer multidirectional open pathways and sufficient vacancies, enabling reversible and fast Na+ insertion/extraction. Machine learning potentials, coupled with molecular simulation techniques, confirm the presence of more abundant pores within the amorphous vanadium oxide (VOx) structure. The simulation of the charging/discharging process elucidates the authentic reaction path and structural evolutions of the VOx@N-MXene HSs, providing sufficient insight into the atomic-scale mechanisms associated with these structural superiorities. The full SIHCs devices demonstrate a high energy density of 198.3 Wh kg-1, along with a long-term cycling lifespan of 8000 cycles. This study offers valuable strategies into the intricate design and exploration of amorphous electrodes, contributing to the advancement of next-generation electrochemical energy devices.
Collapse
Affiliation(s)
- Jun Yuan
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Duo Pan
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Junxiang Chen
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Yangjie Liu
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Jiaqi Yu
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Xiang Hu
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Hongbing Zhan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zhenhai Wen
- State Key Laboratory of Structural Chemistry, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
2
|
Lv YH, Wei S, Yi SS, Duan YX, Cui RC, Yang G, Liu ZY, Chen JH, Yue XZ. Tuning Octahedron Sites of CoV 2O 4 via Cationic Competition for Efficient Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402402. [PMID: 38949051 DOI: 10.1002/smll.202402402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/06/2024] [Indexed: 07/02/2024]
Abstract
Doping transition metal oxide spinels with metal ions represents a significant strategy for optimizing the electronic structure of electrocatalysts. Herein, a bimetallic Fe and Ru doping strategy to fine-tune the crystal structure of CoV2O4 spinel for highly enhanced oxygen evolution reaction (OER) is presented performance. The incorporation of Fe and Ru is observed at octahedral sites within the CoV2O4 structure, effectively modulating the electronic configuration of Co. Density functional theory calculations have confirmed that Fe acts as a novel reactive site, replacing V. Additionally, the synergistic effect of Fe, Co, and Ru effectively optimizes the Gibbs free energy of the intermediate species, reduces the reaction energy barrier, and accelerates the kinetics toward OER. As expected, the best-performing CoVFe0.5Ru0.5O4 displays a low overpotential of 240 mV (@10 mA cm-2) and a remarkably low Tafel slope of 38.9 mV dec-1, surpassing that of commercial RuO2. Moreover, it demonstrates outstanding long-term durability lasting for 72 h. This study provides valuable insights for the design of highly active polymetallic spinel electrocatalysts for energy conversion applications.
Collapse
Affiliation(s)
- Yuan-Hong Lv
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shuai Wei
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Sha-Sha Yi
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yan-Xin Duan
- SINOPEC Maoming Petrochemical Co. Ltd, Maoming, 525000, P. R. China
| | - Rong-Chao Cui
- SINOPEC Maoming Petrochemical Co. Ltd, Maoming, 525000, P. R. China
| | - Guang Yang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Zhong-Yi Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jing-Huo Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xin-Zheng Yue
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
3
|
Jiang Y, Zhang Z, Liao H, Zheng Y, Fu X, Lu J, Cheng S, Gao Y. Progress and Prospect of Bimetallic Oxides for Sodium-Ion Batteries: Synthesis, Mechanism, and Optimization Strategy. ACS NANO 2024; 18:7796-7824. [PMID: 38456414 DOI: 10.1021/acsnano.4c00613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Sodium-ion batteries (SIBs) are considered as an alternative to and even replacement of lithium-ion batteries in the near future in order to address the energy crisis and scarcity of lithium resources due to the wide distribution and abundance of sodium resources on the earth. The exploration and development of high-performance anode materials are critical to the practical applications of advanced SIBs. Among various anode materials, bimetallic oxides (BMOs) have attracted special research attention because of their abundance, easy access, rich redox reactions, enhanced capacity and satisfactory cycling stability. Although many BMO anode materials have been reported as anode materials in SIBs, very limited studies summarized the progress and prospect of BMOs in practical applications of SIBs. In this review, recent progress and challenges of BMO anode materials for SIBs have been comprehensively summarized and discussed. First, the preparation methods and sodium storage mechanisms of BMOs are discussed. Then, the challenges, optimization strategies, and sodium storage performance of BMO anode materials have been reviewed and summarized. Finally, the prospects and future research directions of BMOs in SIBs have been proposed. This review aims to provide insight into the efficient design and optimization of BMO anode materials for high-performance SIBs.
Collapse
Affiliation(s)
- Yumeng Jiang
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Zhi Zhang
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Huanyi Liao
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Yifan Zheng
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Xiutao Fu
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Jianing Lu
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Siya Cheng
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, P. R. China
| | - Yihua Gao
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, P. R. China
| |
Collapse
|
4
|
Sarkar A, Dharmaraj VR, Yi CH, Iputera K, Huang SY, Chung RJ, Hu SF, Liu RS. Recent Advances in Rechargeable Metal-CO 2 Batteries with Nonaqueous Electrolytes. Chem Rev 2023; 123:9497-9564. [PMID: 37436918 DOI: 10.1021/acs.chemrev.3c00167] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
This review article discusses the recent advances in rechargeable metal-CO2 batteries (MCBs), which include the Li, Na, K, Mg, and Al-based rechargeable CO2 batteries, mainly with nonaqueous electrolytes. MCBs capture CO2 during discharge by the CO2 reduction reaction and release it during charging by the CO2 evolution reaction. MCBs are recognized as one of the most sophisticated artificial modes for CO2 fixation by electrical energy generation. However, extensive research and substantial developments are required before MCBs appear as reliable, sustainable, and safe energy storage systems. The rechargeable MCBs suffer from the hindrances like huge charging-discharging overpotential and poor cyclability due to the incomplete decomposition and piling of the insulating and chemically stable compounds, mainly carbonates. Efficient cathode catalysts and a suitable architectural design of the cathode catalysts are essential to address this issue. Besides, electrolytes also play a vital role in safety, ionic transportation, stable solid-electrolyte interphase formation, gas dissolution, leakage, corrosion, operational voltage window, etc. The highly electrochemically active metals like Li, Na, and K anodes severely suffer from parasitic reactions and dendrite formation. Recent research works on the aforementioned secondary MCBs have been categorically reviewed here, portraying the latest findings on the key aspects governing secondary MCB performances.
Collapse
Affiliation(s)
- Ayan Sarkar
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | | | - Chia-Hui Yi
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Kevin Iputera
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Shang-Yang Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
- High-value Biomaterials Research and Commercialization Center, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan
| | - Shu-Fen Hu
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry and Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
5
|
Yuan J, Qiu M, Hu X, Liu Y, Zhong G, Zhan H, Wen Z. Pseudocapacitive Vanadium Nitride Quantum Dots Modified One-Dimensional Carbon Cages Enable Highly Kinetics-Compatible Sodium Ion Capacitors. ACS NANO 2022; 16:14807-14818. [PMID: 35981317 DOI: 10.1021/acsnano.2c05662] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The kinetics incompatibility between battery-type anode and capacitive-type cathode for sodium ion hybrid capacitors (SIHCs) seriously hinders their overall performance output. Herein, we construct a SIHCs device by coupling with quantum grade vanadium nitride (VN) nanodots anchored in one-dimensional N/F co-doped carbon nanofiber cages hybrids (VNQDs@PCNFs-N/F) as the freestanding anode and the corresponding activated N/F co-doped carbon nanofiber cages (APCNFs-N/F) as cathode. The strong coupling of VN quantum dots with N/F co-doped 1D conductive carbon cages effectively facilitates the ion/electron transport and intercalation-conversion-deintercalation reactions, ensuring fast sodium storage to surmount aforesaid kinetics incompatibility. Additionally, density functional theory calculations cogently manifest that the abundant active sites in the VNQDs@PCNFs-N/F configuration boost the Na+ adsorption/reaction activity well which will promote both "intrinsic" and "extrinsic" pseudocapacitance and further improve anode kinetics. Consequently, the assembled SIHCs device can achieve high energy densities of 157.1 and 95.0 Wh kg-1 at power densities of 198.8 and 9100.5 W kg-1, respectively, with an ultralong cycling life over 8000 cycles. This work further verified the feasibility of kinetics-compatible electrode design strategy toward metal ion hybrid capacitors.
Collapse
Affiliation(s)
- Jun Yuan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- College of Materials Science and Engineering. Fuzhou University, Fuzhou 350108, China
| | - Min Qiu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350000, China
| | - Xiang Hu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yangjie Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- College of Materials Science and Engineering. Fuzhou University, Fuzhou 350108, China
| | - Guobao Zhong
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- College of Materials Science and Engineering. Fuzhou University, Fuzhou 350108, China
| | - Hongbing Zhan
- College of Materials Science and Engineering. Fuzhou University, Fuzhou 350108, China
| | - Zhenhai Wen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|