1
|
Wang S, Yan Q, Hu H, Su X, Xu H, Wang J, Gao Y. Doping Ferrocene-Based Conjugated Microporous Polymers with 7,7,8,8-Tetracyanoquinodimethane for Efficient Photocatalytic CO 2 Reduction. Molecules 2024; 29:1738. [PMID: 38675557 PMCID: PMC11052251 DOI: 10.3390/molecules29081738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The design and synthesis of organic photocatalysts remain a great challenge due to their strict structural constraints. However, this could be mitigated by achieving structural flexibility by constructing permanent porosity into the materials. Conjugated microporous polymers (CMPs) are an emerging class of porous materials with an amorphous, three-dimensional network structure, which makes it possible to integrate the elaborate functional groups to enhance photocatalytic performance. Here, we report the synthesis of a novel CMP, named TAPFc-TFPPy-CMP, constructed by 1,1'3,3'-tetra(4-aminophenyl)ferrocene (TAPFc) and 1,3,6,8-tetrakis(4-formylphenyl)pyrene (TFPPy) monomers. The integration of the p-type dopant 7,7,8,8-tetracyanoquinodimethane (TCNQ) into the TAPFc-TFPPy-CMP improved the light adsorption performance, leading to a decrease in the optical bandgap from 2.00 to 1.43 eV. The doped CMP (TCNQ@TAPFc-TFPPy-CMP) exhibited promising catalytic activity in photocatalytic CO2 reduction under visible light, yielding 546.8 μmol g-1 h-1 of CO with a selectivity of 96% and 5.2 μmol g-1 h-1 of CH4. This represented an 80% increase in the CO yield compared to the maternal TAPFc-TFPPy-CMP. The steady-state photoluminescence (PL) and fluorescence lifetime (FL) measurements reveal faster carrier separation and transport after the doping. This study provides guidance for the development of organic photocatalysts for the utilization of renewable energy.
Collapse
Affiliation(s)
- Shenglin Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (S.W.); (Q.Y.); (X.S.); (J.W.)
| | - Qianqian Yan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (S.W.); (Q.Y.); (X.S.); (J.W.)
| | - Hui Hu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (S.W.); (Q.Y.); (X.S.); (J.W.)
| | - Xiaofang Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (S.W.); (Q.Y.); (X.S.); (J.W.)
| | - Huanjun Xu
- School of Science, Qiongtai Normal University, Haikou 571127, China;
| | - Jianyi Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (S.W.); (Q.Y.); (X.S.); (J.W.)
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (S.W.); (Q.Y.); (X.S.); (J.W.)
| |
Collapse
|
2
|
Wang Y, Wu X, Zhou Z, Feng J, Li M, Chen J, Yan W. Selective Adsorption Behavior of Sulfuric Acid Oxidized and Doped Conjugated Microporous Poly(aniline)s toward Lead Ions in an Aqueous Environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38329721 DOI: 10.1021/acs.langmuir.3c03317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The coexistence of lead, zinc, and copper ions in wastewater constitutes an environmental challenge of pressing concern. This research delves into the preparation of innovative oxidation-doped conjugated microporous poly(aniline) frameworks, exploring their prospective efficacy in regulating lead ion adsorption from aqueous solutions. H2SO4-CMPTA demonstrates the capability to reach adsorption equilibrium within 15 min at a lead concentration of 50 ppm. Even at a lead concentration of 20 ppm, it still efficaciously attenuates these levels to sub-10 ppb, a value surpassing extant standard. H2SO4-CMPTA retains over 78.8% adsorption efficiency after six cycles. Analytical characterization coupled with computational calculations suggests that sulfate-coordinated nitrogen cationic structure plays a crucial role in adsorption. A deeper investigation reveals the cardinal role of electrostatic attraction and exclusive chelation adsorption underpinning the efficient capture of lead ions by doped sulfate ions. Intriguingly, in a mixed heavy metal solution containing lead, zinc, and copper ions, H2SO4-CMPTA exhibits an initial predilection toward zinc ions, yet an eventual ion-exchange adsorption gravitating toward lead ions was discerned, governed by the latter's superior binding energy. Our study elucidates a promising material as an efficacious tool for the remediation of aquatic environments tainted with lead contaminants.
Collapse
Affiliation(s)
- Yubing Wang
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xiaoxi Wu
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Ziyi Zhou
- Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, "Four Joint Subjects One Union" School-Enterprise Joint Research Center for Power Battery Recycling & Circulation Utilization Technology, Department of Applied Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jiangtao Feng
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Mingtao Li
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jie Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Key Laboratory of Solid Waste Recycling and Resource Recovery, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
3
|
Liu Q, Li H, Zhang Y, Chen W, Yu S, Chen Y. Porphyrin/phthalocyanine-based porous organic polymers for pollutant removal and detection: Synthesis, mechanisms, and challenges. ENVIRONMENTAL RESEARCH 2023; 239:117406. [PMID: 37839529 DOI: 10.1016/j.envres.2023.117406] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/24/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
The growing global concern about environmental threats due to environmental pollution requires the development of environmentally friendly and efficient removal/detection materials and methods. Porphyrin/phthalocyanine (Por/Pc) based porous organic polymers (POPs) as a newly emerging porous material are prepared through polymerizing building blocks with different structures. Benefiting from the high porosity, adjustable pore structure, and enzyme-like activities, the Por/Pc-POPs can be the ideal platform to study the removal and detection of pollutants. However, a systematic summary of their application in environmental treatment is still lacking to date. In this review, the development of various Por/Pc-POPs for pollutant removal and detection applications over the past decade was systematically addressed for the first time to offer valuable guidance on environmental remediation through the utilization of Por/Pc-POPs. This review is divided into two sections (pollutants removal and detection) focusing on Por/Pc-POPs for organic, inorganic, and gaseous pollutants adsorption, photodegradation, and chemosensing, respectively. The related removal and sensing mechanisms are also discussed, and the methods to improve removal and detection efficiency and selectivity are also summarized. For the future practical application of Por/Pc-POPs, this review provides the emerging research directions and their application possibility and challenges in the removal and detection of pollutants.
Collapse
Affiliation(s)
- Qi Liu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Hao Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Yuming Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China
| | - Wenmiao Chen
- Department of Science, Texas A&M University at Qatar, Education City, P.O. Box 23874, Doha, Qatar.
| | - Sirong Yu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| | - Yanli Chen
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, Shandong, China.
| |
Collapse
|
4
|
Mousa AO, Chuang CH, Kuo SW, Mohamed MG. Strategic Design and Synthesis of Ferrocene Linked Porous Organic Frameworks toward Tunable CO 2 Capture and Energy Storage. Int J Mol Sci 2023; 24:12371. [PMID: 37569744 PMCID: PMC10419241 DOI: 10.3390/ijms241512371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
This work focuses on porous organic polymers (POPs), which have gained significant global attention for their potential in energy storage and carbon dioxide (CO2) capture. The study introduces the development of two novel porous organic polymers, namely FEC-Mel and FEC-PBDT POPs, constructed using a simple method based on the ferrocene unit (FEC) combined with melamine (Mel) and 6,6'-(1,4-phenylene)bis(1,3,5-triazine-2,4-diamine) (PBDT). The synthesis involved the condensation reaction between ferrocenecarboxaldehyde monomer (FEC-CHO) and the respective aryl amines. Several analytical methods were employed to investigate the physical characteristics, chemical structure, morphology, and potential applications of these porous materials. Through thermogravimetric analysis (TGA), it was observed that both FEC-Mel and FEC-PBDT POPs exhibited exceptional thermal stability. FEC-Mel POP displayed a higher surface area and porosity, measuring 556 m2 g-1 and 1.26 cm3 g-1, respectively. These FEC-POPs possess large surface areas, making them promising materials for applications such as supercapacitor (SC) electrodes and gas adsorption. With 82 F g-1 of specific capacitance at 0.5 A g-1, the FEC-PBDT POP electrode has exceptional electrochemical characteristics. In addition, the FEC-Mel POP showed remarkable CO2 absorption capabilities, with 1.34 and 1.75 mmol g-1 (determined at 298 and 273 K; respectively). The potential of the FEC-POPs created in this work for CO2 capacity and electrical testing are highlighted by these results.
Collapse
Affiliation(s)
- Aya Osama Mousa
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan;
| | - Cheng-Hsin Chuang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 804201, Taiwan;
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, Center of Crystal Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan;
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
5
|
Li BN, Zhang XL, Bai XH, Liang ZJ, Li J, Fan XY. Electron-Rich Triazine-Conjugated Microporous Polymers for the Removal of Dyes from Wastewater. Molecules 2023; 28:4785. [PMID: 37375340 DOI: 10.3390/molecules28124785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Conjugated microporous polymers (CMP) as porous functional materials have received considerable attention due to their unique structures and fascinating properties for the adsorption and degradation of dyes. Herein, a triazine-conjugated microporous polymer material with rich N-donors at the skeleton itself was successfully synthesized via the Sonogashira-Hagihara coupling by a one-pot reaction. These two polymers had Brunauer-Emmett-Teller (BET) surface areas of 322 and 435 m2g-1 for triazine-conjugated microporous polymers (T-CMP) and T-CMP-Me, respectively. Due to the porous effects and the rich N-donor at the framework, it displayed a higher removal efficiency and adsorption performance compared to cationic-type dyes and selectivity properties for (methylene blue) MB+ from a mixture solution of cationic-type dyes. Furthermore, the T-CMP-Me could quickly and drastically separate MB+ and (methyl orange) MO- from the mixed solution within a short time. Their intriguing absorption behaviors are supported by 13C NMR, UV-vis absorption spectroscopy, scanning electron microscopy, and X-ray powder diffraction studies. This work will not only improve the development of porous material varieties, but also demonstrate the adsorption or selectivity of porous materials for dyes from wastewater.
Collapse
Affiliation(s)
- Bao-Ning Li
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Xing-Long Zhang
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Xiao-Hui Bai
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Zhen-Jie Liang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jian Li
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| | - Xiao-Yong Fan
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, China
| |
Collapse
|
6
|
Conjugated Microporous Polymers Based on Ferrocene Units as Highly Efficient Electrodes for Energy Storage. Polymers (Basel) 2023; 15:polym15051095. [PMID: 36904335 PMCID: PMC10007016 DOI: 10.3390/polym15051095] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
This work describes the facile designing of three conjugated microporous polymers incorporated based on the ferrocene (FC) unit with 1,4-bis(4,6-diamino-s-triazin-2-yl)benzene (PDAT), tris(4-aminophenyl)amine (TPA-NH2), and tetrakis(4-aminophenyl)ethane (TPE-NH2) to form PDAT-FC, TPA-FC, and TPE-FC CMPs from Schiff base reaction of 1,1'-diacetylferrocene monomer with these three aryl amines, respectively, for efficient supercapacitor electrodes. PDAT-FC and TPA-FC CMPs samples featured higher surface area values of approximately 502 and 701 m2 g-1, in addition to their possession of both micropores and mesopores. In particular, the TPA-FC CMP electrode achieved more extended discharge time compared with the other two FC CMPs, demonstrating good capacitive performance with a specific capacitance of 129 F g-1 and capacitance retention value of 96% next 5000 cycles. This feature of TPA-FC CMP is attributed to the presence of redox-active triphenylamine and ferrocene units in its backbone, in addition to a high surface area and good porosity that facilitates the redox process and provides rapid kinetics.
Collapse
|
7
|
Wang K, Geng T, Xu H. The synthesis of triazine‐based conjugated microporous polymers via nucleophilic substitution reactions for fluorescence sensing to
o
‐nitrophenol. J Appl Polym Sci 2023. [DOI: 10.1002/app.53707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Kang Wang
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering Anqing Normal University Anqing China
| | - Tong‐Mou Geng
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering Anqing Normal University Anqing China
| | - Heng Xu
- Anhui Province Key Laboratory of Optoelectronic and Magnetism Functional Materials, School of Chemistry and Chemical Engineering Anqing Normal University Anqing China
| |
Collapse
|
8
|
Wang R, Liu Q, Peng Q, Yang X, Zhao H, Fan H, Liu H, Cao X. A novel strategy to improve gas capture performance of metal-free azo-bridged porphyrin porous organic polymers: The design of traps. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Samy MM, Mohamed MG, Mansoure TH, Meng TS, Khan MAR, Liaw CC, Kuo SW. Solid state chemical transformations through ring-opening polymerization of ferrocene-based conjugated microporous polymers in host–guest complexes with benzoxazine-linked cyclodextrin. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2021.10.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
10
|
|
11
|
Zhao X, Qi Y, Li J, Ma Q. Porous Organic Polymers Derived from Ferrocene and Tetrahedral Silicon-Centered Monomers for Carbon Dioxide Sorption. Polymers (Basel) 2022; 14:370. [PMID: 35160360 PMCID: PMC8838439 DOI: 10.3390/polym14030370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023] Open
Abstract
Herein, we present two novel ferrocene-containing porous organic polymers, FPOP-1 and FPOP-2, by the Heck reactions of 1,1'-divinylferrocene with two tetrahedral silicon-centered units, i.e., tetrakis(4-bromophenyl)silane and tetrakis(4'-bromo-[1,1'-biphenyl]-4-yl)silane. The resulting materials possess high thermal stability and moderate porosity with the Brunauer-Emmer-Teller (BET) surface areas of 499 m2 g-1 (FPOP-1) and 354 m2 g-1 (FPOP-2) and total pore volumes of 0.43 cm3 g-1 (FPOP-1) and 0.49 cm3 g-1 (FPOP-2). The porosity is comparable to previously reported ferrocene-containing porous polymers. These materials possess comparable CO2 capacities of 1.16 mmol g-1 (5.10 wt%) at 273 K and 1.0 bar, and 0.54 mmol g-1 (2.38 wt%) at 298 K and 1.0 bar (FPOP-1). The found capacities are comparable to, or higher than many porous polymers having similar or higher surface areas. They have high isosteric heats of up to 32.9 kJ mol-1, proving that the affinity between the polymer network and CO2 is high, which can be explained by the presence of ferrocene units in the porous networks. These results indicate that these materials can be promisingly utilized as candidates for the storage or capture of CO2. More ferrocene-containing porous polymers can be designed and synthesized by combining ferrocene units with various aromatic monomers under this strategy and their applications could be explored.
Collapse
Affiliation(s)
- Xingya Zhao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China; (X.Z.); (Y.Q.); (J.L.)
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yipeng Qi
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China; (X.Z.); (Y.Q.); (J.L.)
| | - Jianquan Li
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China; (X.Z.); (Y.Q.); (J.L.)
| | - Qingyu Ma
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China; (X.Z.); (Y.Q.); (J.L.)
| |
Collapse
|
12
|
Kochergin YS, Villa K, Nemeškalová A, Kuchař M, Pumera M. Hybrid Inorganic-Organic Visible-Light-Driven Microrobots Based on Donor-Acceptor Organic Polymer for Degradation of Toxic Psychoactive Substances. ACS NANO 2021; 15:18458-18468. [PMID: 34730953 DOI: 10.1021/acsnano.1c08136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Light-driven microrobots based on organic semiconductors have received tremendous attention in the past few years due to their unique properties, such as ease of reactivity tunability, band-gap modulation, and low cost. However, their fabrication with defined morphologies is a very challenging task that results in amorphous microrobots with poor motion efficiencies. Herein, we present hybrid inorganic-organic photoactive microrobots with a tubular shape and based on the combination of a mesoporous silica template with an active polymer containing thiophene and triazine units (named as Tz-Th microrobots). Owing to their well-defined tubular structure, such Tz-Th microrobots showed efficient directional motion under fuel-free conditions. Depending on the accumulation of the polymer coating, these microdevices also exhibited stand-up and rotation motion. As a proof-of-concept, we use these hybrid microrobots for the capture and degradation of toxic psychoactive drugs commonly found in wastewater effluents such as methamphetamine derivatives. We found that the microrobots were able to decompose the drug into small organic fragments after 20 min of visible light irradiation, reaching total intermediates removal after 2 h. Therefore, this approach represents a versatile and low-cost strategy to fabricate structured organic microrobots with efficient directional motion by using inorganic materials as the robot chassis, thereby maintaining the superior photocatalytic performance usually associated with such organic polymers.
Collapse
Affiliation(s)
- Yaroslav S Kochergin
- Centre for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Katherine Villa
- Centre for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Alžběta Nemeškalová
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Martin Kuchař
- Forensic Laboratory of Biologically Active Substances, Department of Chemistry of Natural Compounds, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague 6, Czech Republic
- Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Martin Pumera
- Centre for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul 03722, Korea
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan
| |
Collapse
|
13
|
Cao X, Wang R, Peng Q, Zhao H, Fan H, Liu H, Liu Q. Effect of pore structure on the adsorption capacities to different sizes of adsorbates by ferrocene-based conjugated microporous polymers. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
Mondal S, Pain T, Sahu K, Kar S. Large-Scale Green Synthesis of Porphyrins. ACS OMEGA 2021; 6:22922-22936. [PMID: 34514263 PMCID: PMC8427785 DOI: 10.1021/acsomega.1c03534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 05/09/2023]
Abstract
A new methodology for porphyrin synthesis has been developed. This is a simple two-step protocol. The first step involves the condensation of pyrrole and aldehyde in an H2O-MeOH mixture using HCl. The obtained precipitate from the first step was dissolved in reagent-grade dimethylformamide (DMF) and refluxed for 1.5 h, followed by stirring overnight in the air at room temperature. Subsequent purification through column chromatography or crystallization resulted in the formation of pure porphyrins. Advantageously, this methodology does not need any expensive chemicals such as 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ), chloranil, and so forth as an oxidizing agent. This reaction also does not require a large volume of dry chlorinated solvents. Contrary to the reported methodologies, which are mostly ineffective in the gram-scale production of porphyrins, the present method perfectly caters to the need for gram-scale production of porphyrins. In essence, the current methodology does not represent the synthesis having the highest yield in the literature. However, it represents the easiest and cheapest synthesis of porphyrin on a large scale to obtain a reproducible yield of 10-40% with high purity. In a few of the examples, even column chromatography is not necessary. A simple crystallization technique will be sufficient to generate the desired porphyrins in good yields.
Collapse
Affiliation(s)
- Sruti Mondal
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400
094, India
| | - Tanmoy Pain
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400
094, India
| | - Kasturi Sahu
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400
094, India
| | - Sanjib Kar
- School
of Chemical Sciences, National Institute
of Science Education and Research (NISER), Bhubaneswar, Odisha 752050, India
- Homi
Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, Maharashtra 400
094, India
| |
Collapse
|
15
|
Lee MY, Ahmed I, Yu K, Lee CS, Kang KK, Jang MS, Ahn WS. Aqueous adsorption of bisphenol A over a porphyrinic porous organic polymer. CHEMOSPHERE 2021; 265:129161. [PMID: 33302201 DOI: 10.1016/j.chemosphere.2020.129161] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/24/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
A new porphyrinic porous organic polymer (PPOP) with high stability and excellent textural properties (929 m2/g surface area with 0.73 cm3/g pore volume) was made via the Friedel-Crafts reaction and applied for bisphenol A (BPA) adsorption in water. The material was examined by X-ray diffraction, N2 adsorption-desorption isotherms, scanning electron microscopy, infrared spectroscopy, X-ray photoelectron spectroscopy, and solid-state 13C CP-MAS nuclear magnetic resonance spectroscopy. PPOP was proven highly effective for capturing BPA among the many adsorbent materials investigated. The Langmuir model could closely match the adsorption isotherm data with a high adsorption amount of ca. 653 mg/g at 25 °C. Approximately 95% of BPA was adsorbed in 50 min, and the pseudo-second-order kinetic model satisfactorily described the adsorption behavior. This adsorption process was exothermic (ΔH° = -39.10 kJ/mol), and the capacity gradually decreased with increasing pH. Spectroscopic analyses indicated that the BPA adsorption on PPOP was affected by (1) π-π interaction between BPA and the aromatic constituents of PPOP, (2) hydrogen bonding between the N sites of porphyrin units in PPOP and the hydroxyl group of BPA and, and (3) hydrophobic interactions. PPOP was easily regenerated after acetone washing, and >98% efficiency was observed throughout the five repeated adsorption-desorption cycles.
Collapse
Affiliation(s)
- Myeong Yeon Lee
- Department of Chemical Engineering, Inha University, Incheon, 22201, Republic of Korea
| | - Imteaz Ahmed
- Department of Chemical Engineering, Inha University, Incheon, 22201, Republic of Korea
| | - Kwangsun Yu
- Department of Chemical Engineering, Inha University, Incheon, 22201, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yuseoung-Gu, Daejeon, 305-764, Republic of Korea
| | - Kyoung-Ku Kang
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Yuseoung-Gu, Daejeon, 305-764, Republic of Korea.
| | - Min-Seok Jang
- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Wha-Seung Ahn
- Department of Chemical Engineering, Inha University, Incheon, 22201, Republic of Korea.
| |
Collapse
|
16
|
Multifunctional Polyhedral Oligomeric Silsesquioxane (POSS) Based Hybrid Porous Materials for CO 2 Uptake and Iodine Adsorption. Polymers (Basel) 2021; 13:polym13020221. [PMID: 33435232 PMCID: PMC7826546 DOI: 10.3390/polym13020221] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/27/2023] Open
Abstract
In this study, two different types of hybrid porous organic polymers (POPs), polyhedral oligomeric silsesquioxane tetraphenylpyrazine (POSS-TPP) and tetraphenylethene (POSS-TPE), were successfully synthesized through the Friedel-Crafts polymerization of tetraphenylpyrazine (TPP) and tetraphenylethene (TPE), respectively, with octavinylsilsesquioxane (OVS) as node building blocks, in the presence of anhydrous FeCl3 as a catalyst and 1,2-dichloroethane at 60 °C. Based on N2 adsorption and thermogravimetric analyses, the resulting hybrid porous materials displayed high surface areas (270 m2/g for POSS-TPP and 741 m2/g for POSS-TPE) and outstanding thermal stabilities. Furthermore, as-prepared POSS-TPP exhibited a high carbon dioxide capacity (1.63 mmol/g at 298 K and 2.88 mmol/g at 273 K) with an excellent high adsorption capacity for iodine, reaching up to 363 mg/g, compared with the POSS-TPE (309 mg/g).
Collapse
|
17
|
Khakbaz M, Ghaemi A, Mir Mohamad Sadeghi G. Synthesis methods of microporous organic polymeric adsorbents: a review. Polym Chem 2021. [DOI: 10.1039/d1py01145f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MOPs can be synthesized in a large variety of ways, which affect their pores and surface area. Variation in synthesis and porosity has a significant effect on their adsorption properties.
Collapse
Affiliation(s)
- Mobina Khakbaz
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Ahad Ghaemi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Gity Mir Mohamad Sadeghi
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
18
|
Jiang X, Liu Z, Ma L, Tao Y, Luo Y. Facile synthesis of porous porphyrin-based polymers by solvent-crosslinking method. NEW J CHEM 2021. [DOI: 10.1039/d1nj03480d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three solvents were employed as crosslinkers to synthesise porous porphyrin-based polymers via Friedel–Crafts alkylation reaction.
Collapse
Affiliation(s)
- Xiaowei Jiang
- Institute of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Changzhou, People's Republic of China
| | - Zhihong Liu
- Institute of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Changzhou, People's Republic of China
| | - Libo Ma
- Institute of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Changzhou, People's Republic of China
| | - Yu Tao
- Institute of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Changzhou, People's Republic of China
| | - Yali Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
19
|
Multifunctional Hypercrosslinked Porous Organic Polymers Based on Tetraphenylethene and Triphenylamine Derivatives for High-Performance Dye Adsorption and Supercapacitor. Polymers (Basel) 2020; 12:polym12102426. [PMID: 33096648 PMCID: PMC7589367 DOI: 10.3390/polym12102426] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
We successfully prepared two different classes of hypercrosslinked porous organic polymers (HPPs)-the tetraphenylethene (TPE) and (4-(5,6-Diphenyl-1H-Benzimidazol-2-yl)-triphenylamine (DPT) HPPs-through the Friedel-Crafts polymerization of tetraphenylethene and 4-(5,6-diphenyl-1H-benzimidazol-2-yl)-triphenylamine, respectively, with 1,4-bis(chloromethyl)benzene (Ph-2Cl) in the presence of anhydrous FeCl3 as a catalyst. Our porous materials exhibited high BET surface areas (up to 1000 m2 g-1) and good thermal stabilities. According to electrochemical and dyes adsorption applications, the as-prepared DPT-HPP exhibited a high specific capacitance of 110 F g-1 at a current density of 0.5 A g-1, with an excellent cycling stability of over 2000 times at 10 A g-1. In addition, DPT-HPP showed a high adsorption capacity up to 256.40 mg g-1 for the removal of RhB dye from water.
Collapse
|