1
|
Ratsameetammajak N, Autthawong T, Khunpakdee K, Haruta M, Chairuangsri T, Sarakonsri T. Insight into the Role of Conductive Polypyrrole Coated on Rice Husk-Derived Nanosilica-Reduced Graphene Oxide as the Anodes: Electrochemical Improvement in Sustainable Lithium-Ion Batteries. Polymers (Basel) 2023; 15:4638. [PMID: 38139889 PMCID: PMC10747683 DOI: 10.3390/polym15244638] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Polypyrrole (PPy) is a type of conducting polymer that has garnered attention as a potential electrode material for sustainable energy storage devices. This is mostly attributed to its mechanical flexibility, ease of processing, and ecologically friendly nature. Here, a polypyrrole-coated rice husk-derived nanosilica-reduced graphene oxide nanocomposite (SiO2-rGO@PPy) as an anode material was developed by a simple composite technique followed by an in situ polymerization process. The architecture of reduced graphene oxide offers a larger electrode/electrolyte interface to promote charge-transfer reactions and provides sufficient space to buffer a large volume expansion of SiO2, maintaining the mechanical integrity of the overall electrode during the lithiation/delithiation process. Moreover, the conducting polymer coating not only improves the capacity of SiO2, but also suppresses the volume expansion and rapid capacity fading caused by serious pulverization. The present anode material shows a remarkable specific reversible capacity of 523 mAh g-1 at 100 mA g-1 current density and exhibits exceptional discharge rate capability. The cycling stability at a current density of 100 mA g-1 shows 81.6% capacity retention and high Coulombic efficiency after 250 charge-discharge cycles. The study also pointed out that this method might be able to be used on a large scale in the lithium-ion battery industry, which could have a big effect on its long-term viability. Creating sustainable nanocomposites is an exciting area of research that could help solve some of the biggest problems with lithium-ion batteries, like how easy they are to make and how big they can be used in industry. This is because they are sustainable and have less of an impact on the environment.
Collapse
Affiliation(s)
- Natthakan Ratsameetammajak
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.R.); (T.A.); (K.K.)
- Center of Excellent for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thanapat Autthawong
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.R.); (T.A.); (K.K.)
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittiched Khunpakdee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.R.); (T.A.); (K.K.)
- Center of Excellent for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Mitsutaka Haruta
- Institute for Chemical Research, Kyoto University, Kyoto 611-0011, Japan;
| | - Torranin Chairuangsri
- Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Thapanee Sarakonsri
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.R.); (T.A.); (K.K.)
- Center of Excellent for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
2
|
Conjugated Polymer/Graphene Oxide Nanocomposites—State-of-the-Art. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5110292] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Graphene oxide is an imperative modified form of graphene. Similar to graphene, graphene oxide has gained vast interest for the myriad of industrial applications. Conjugated polymers or conducting polymers are well known organic materials having conducting backbone. These polymers have semiconducting nature due to π-conjugation along the main chain. Doping and modification have been used to enhance the electrical conductivity of the conjugated polymers. The nanocomposites of the conjugated polymers have been reported with the nanocarbon nanofillers including graphene oxide. This review essentially presents the structure, properties, and advancements in the field of conducting polymer/graphene oxide nanocomposites. The facile synthesis, processability, and physical properties of the polymer/graphene oxide nanocomposites have been discussed. The conjugated polymer/graphene oxide nanocomposites have essential significance for the supercapacitors, solar cells, and anti-corrosion materials. Nevertheless, the further advanced properties and technical applications of the conjugated polymer/graphene oxide nanocomposites need to be explored to overcome the challenges related to the high performance.
Collapse
|