Zhou T, Wu L, Ma N, Tang F, Chen J, Jiang Z, Li Y, Ma T, Yang N, Zong Z. Photothermally responsive theranostic nanocomposites for near-infrared light triggered drug release and enhanced synergism of photothermo-chemotherapy for gastric cancer.
Bioeng Transl Med 2023;
8:e10368. [PMID:
36684111 PMCID:
PMC9842049 DOI:
10.1002/btm2.10368]
[Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/12/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Near-infrared (NIR) photothermal therapy plays a critical role in the cancer treatment and diagnosis as a promising carcinoma treatment modalities nowadays. However, development of clinical application has been greatly limited due to the inefficient drug release and low tumor accumulation. Herein, we designed a NIR-light triggered indocyanine green (ICG)-based PCL core/P(MEO2MA-b-HMAM) shell nanocomposites (PPH@ICG) and evaluated their therapeutic effects in vitro and in vivo. The anticancer drug 5-fluorouracil (5Fu) and the photothermal agent ICG were loaded into a thermo-sensitive micelle (PPH@5Fu@ICG) by self-assembly. The nanoparticles formed were characterized using transmission electron microscopy, dynamic light scattering, and fluorescence spectra. The thermo-sensitive copolymer (PPH@5Fu@ICG) showed a great temperature-controlled drug release response with lower critical solution temperature. In vitro cellular uptake and TEM imaging proved that PPH@5Fu@ICG nanoparticles can home into the lysosomal compartments under NIR. Moreover, in gastric tumor-bearing nude mice, PPH@5Fu@ICG + NIR group exhibited excellent improvement in antitumor efficacy based on the NIR-triggered thermo-chemotherapy synergy, both in vitro and in vivo. In summary, the proposed strategy of synergistic photo-hyperthermia chemotherapy effectively reduced the 5Fu dose, toxic or side effect, which could serve as a secure and efficient approach for cancer theranostics.
Collapse