1
|
Nada H. Stable Binding Conformations of Polymaleic and Polyacrylic Acids at a Calcite Surface in the Presence of Countercations: A Metadynamics Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7046-7057. [PMID: 35604639 DOI: 10.1021/acs.langmuir.2c00750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Elucidating the stable binding conformations of additives at the surface of CaCO3 crystals is essential to biomineralization, scale inhibition, and materials technology. However, accomplishing this by experimental means is rather difficult. In this study, molecular dynamics simulations based on a metadynamics approach were conducted to elucidate the stable binding conformations of a deprotonated polymaleic acid (PMA) additive and two deprotonated poly(acrylic acid) (PAA) additives with different polymerization degrees in the presence of various countercations at a hydrated calcite (104) surface. The simulated free-energy surfaces suggested the existence of several slightly different stable binding conformations for each additive. The appearance of these distinct binding conformations is speculated to originate from different balances of interactions between the additive, the calcite surface, and the countercations. The binding conformations and binding stabilities at the calcite surface were affected by the countercations, with Ca2+ ions producing a more pronounced effect than Na+ ions. Furthermore, the simulation results suggested that the binding stability at the calcite surface was higher for the PMA additive than for the PAA additives, and the PAA additive with a polymerization degree of 10 displayed a binding stability that was similar to or lower than that of the PAA additive with a polymerization degree of 5. The present simulation method provides a new strategy for analyzing the binding conformations of complex additives at material surfaces, developing additives that stably bind to these surfaces, and designing additives to control crystal growth.
Collapse
Affiliation(s)
- Hiroki Nada
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8569, Japan
| |
Collapse
|
2
|
Lopez CG, Horkay F, Schweins R, Richtering W. Solution Properties of Polyelectrolytes with Divalent Counterions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Carlos G. Lopez
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, Aachen 52056, Germany
| | - Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 13 South Drive, Bethesda, Maryland 20892, United States
| | - Ralf Schweins
- Institut Laue-Langevin, DS/LSS, 71 Avenue des Martyrs, CS 20156, Grenoble Cedex 9 38042, France
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, Aachen 52056, Germany
| |
Collapse
|
3
|
Lemke T, Edte M, Gebauer D, Peter C. Three Reasons Why Aspartic Acid and Glutamic Acid Sequences Have a Surprisingly Different Influence on Mineralization. J Phys Chem B 2021; 125:10335-10343. [PMID: 34473925 DOI: 10.1021/acs.jpcb.1c04467] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Understanding the role of polymers rich in aspartic acid (Asp) and glutamic acid (Glu) is the key to gaining precise control over mineralization processes. Despite their chemical similarity, experiments revealed a surprisingly different influence of Asp and Glu sequences. We conducted molecular dynamics simulations of Asp and Glu peptides in the presence of calcium and chloride ions to elucidate the underlying phenomena. In line with experimental differences, in our simulations, we indeed find strong differences in the way the peptides interact with ions in solution. The investigated Asp pentapeptide tends to pull a lot of ions into its vicinity, and many structures with clusters of calcium and chloride ions on the surface of the peptide can be observed. Under the same conditions, comparatively fewer ions can be found in proximity of the investigated Glu pentapeptide, and the structures are characterized by single calcium ions bound to multiple carboxylate groups. Based on our simulation data, we identified three reasons contributing to these differences, leading to a new level of understanding additive-ion interactions.
Collapse
Affiliation(s)
- Tobias Lemke
- Theoretical Chemistry, University of Konstanz, 78547 Konstanz, Germany
| | - Moritz Edte
- Theoretical Chemistry, University of Konstanz, 78547 Konstanz, Germany
| | - Denis Gebauer
- Institute of Inorganic Chemistry, Leibniz University Hannover, 30167 Hannover, Germany
| | - Christine Peter
- Theoretical Chemistry, University of Konstanz, 78547 Konstanz, Germany
| |
Collapse
|
4
|
Smirnov MA, Tolmachev DA, Glova AD, Sokolova MP, Geydt PV, Lukasheva NV, Lyulin SV. Combined Use of Atomic Force Microscopy and Molecular Dynamics in the Study of Biopolymer Systems. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221020089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
5
|
Tolmachev D, Mamistvalov G, Lukasheva N, Larin S, Karttunen M. Effects of Amino Acid Side-Chain Length and Chemical Structure on Anionic Polyglutamic and Polyaspartic Acid Cellulose-Based Polyelectrolyte Brushes. Polymers (Basel) 2021; 13:polym13111789. [PMID: 34071693 PMCID: PMC8199235 DOI: 10.3390/polym13111789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022] Open
Abstract
We used atomistic molecular dynamics (MD) simulations to study polyelectrolyte brushes based on anionic α,L-glutamic acid and α,L-aspartic acid grafted on cellulose in the presence of divalent CaCl2 salt at different concentrations. The motivation is to search for ways to control properties such as sorption capacity and the structural response of the brush to multivalent salts. For this detailed understanding of the role of side-chain length, the chemical structure and their interplay are required. It was found that in the case of glutamic acid oligomers, the longer side chains facilitate attractive interactions with the cellulose surface, which forces the grafted chains to lie down on the surface. The additional methylene group in the side chain enables side-chain rotation, enhancing this effect. On the other hand, the shorter and more restricted side chains of aspartic acid oligomers prevent attractive interactions to a large degree and push the grafted chains away from the surface. The difference in side-chain length also leads to differences in other properties of the brush in divalent salt solutions. At a low grafting density, the longer side chains of glutamic acid allow the adsorbed cations to be spatially distributed inside the brush resulting in a charge inversion. With an increase in grafting density, the difference in the total charge of the aspartic and glutamine brushes disappears, but new structural features appear. The longer sides allow for ion bridging between the grafted chains and the cellulose surface without a significant change in main-chain conformation. This leads to the brush structure being less sensitive to changes in salt concentration.
Collapse
Affiliation(s)
- Dmitry Tolmachev
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 Petersburg, Russia; (N.L.); (S.L.)
- Correspondence: (D.T.); (M.K.)
| | - George Mamistvalov
- Faculty of Physics, St. Petersburg State University, Petrodvorets, 198504 Petersburg, Russia;
| | - Natalia Lukasheva
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 Petersburg, Russia; (N.L.); (S.L.)
| | - Sergey Larin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 Petersburg, Russia; (N.L.); (S.L.)
- Faculty of Physics, St. Petersburg State University, Petrodvorets, 198504 Petersburg, Russia;
| | - Mikko Karttunen
- Institute of Macromolecular Compounds, Russian Academy of Sciences, Bolshoy pr. 31, 199004 Petersburg, Russia; (N.L.); (S.L.)
- Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Department of Applied Mathematics, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- The Centre of Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
- Correspondence: (D.T.); (M.K.)
| |
Collapse
|