1
|
Biji CA, Balde A, Kim SK, Nazeer RA. Optimization of alginate/carboxymethyl chitosan microbeads for the sustained release of celecoxib and attenuation of intestinal inflammation in vitro. Int J Biol Macromol 2024; 282:137022. [PMID: 39476907 DOI: 10.1016/j.ijbiomac.2024.137022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/18/2024] [Accepted: 10/27/2024] [Indexed: 11/05/2024]
Abstract
Multiple anti-inflammatory medications have helped treat inflammatory bowel disease (IBD). However, oral administration has minimal absorption and systemic side effects. This study aims to investigate the potential of encapsulating anti-inflammatory drug celecoxib (Cele) within microbeads for the treatment of IBD. Microbeads were formed by cross-linking carboxymethyl chitosan (CMCs) with sodium alginate (Alg) through the ionic gelation method and optimized through response surface methodology. Additionally, the study revealed a mucoadhesivity value of 59.32 ± 0.74 % for the optimized microbead system. The drug release study demonstrated the sustained release of Cele CMCs/Alg microbeads upto 24 h compared to quick release of the free drug. The results of the cell viability assay indicated that the Cele-Alg/CMCs microbeads exhibited a non-toxic nature within the concentration range of 100-250 μM. A significant decrease in nitric oxide (NO) generation (61.14 ± 3.67 %) was seen in HCT-116 cells stimulated with lipopolysaccharide (LPS) upon treatment with Cele-250μM/CMCs/Alg microbeads. The results of the reactive oxygen species and wound healing assay suggest that Cele-250μM/CMCs/Alg microbeads had improved anti-inflammatory characteristics comparable to those of free drug treatment. The western blot analysis demonstrated that the microbeads composed of CMCs/Alg-Cele possess the capacity to inhibit the expression of COX-2 in vitro supressing inflammation.
Collapse
Affiliation(s)
- Catherin Ann Biji
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamilnadu, India
| | - Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamilnadu, India
| | - Se-Kwon Kim
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 11558, Gyeonggi-do, South Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamilnadu, India.
| |
Collapse
|
2
|
Doustvaghe YK, Haeri A, Sisakht MM, Amirkhani MA, Vatanpour H. Recombinant human epidermal growth factor-loaded liposomes and transferosomes for dermal delivery: Development, characterization, and cytotoxicity evaluation. Drug Dev Res 2024; 85:e22234. [PMID: 39041350 DOI: 10.1002/ddr.22234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/14/2024] [Accepted: 06/29/2024] [Indexed: 07/24/2024]
Abstract
Recombinant human epidermal growth factor (rhEGF) is widely utilized as an antiaging compound in wound-healing therapies and cosmetic purposes. However, topical administration of rhEGF has limited treatment outcomes because of its poor percutaneous penetration and rapid proteinase degradation. To overcome these obstacles, this study aims to develop and characterize rhEGF-containing conventional liposomes (rhEGF-CLs) and transferosomes (rhEGF-TFs) as efficient dermal carriers. Physicochemical characterization such as particle size, zeta potential (ZP), morphology, encapsulation efficiency (EE%), and release properties of nanocarriers as well as in vitro cytotoxicity in human dermal fibroblast (HDF) and human embryonic kidney (HEK293) cell lines were investigated. rhEGF-TFs at the rhEGF concentration ranging from 0.05 to 1.0 μg/mL were chosen as the optimum formulation due to the desired release profile, acceptable EE%, optimal cell proliferation, and minimal cytotoxicity compared to the control and free rhEGF. However, higher concentrations caused a decrease in cell viability. The ratio 20:80 of Tween 80 to lipid was optimal for rhEGF-TFs-2, which had an average diameter of 233.23 ± 2.64 nm, polydispersity index of 0.33 ± 0.05, ZP of -15.46 ± 0.29 mV, and EE% of 60.50 ± 1.91. The formulations remained stable at 5°C for at least 1 month. TEM and SEM microscopy revealed that rhEGF-TFs-2 had a regular shape and unilamellar structure. In vitro drug release studies confirmed the superiority of rhEGF-TFs-2 in terms of optimal cumulative release of rhEGF approximately 82% within 24 h. Franz diffusion cell study showed higher rhEGF-TFs-2 skin permeation compared to free rhEGF solution. Taken together, we concluded that rhEGF-TFs can be used as a promising formulation for wound healing and skin regeneration products.
Collapse
Affiliation(s)
- Yasaman Kiani Doustvaghe
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Mollapour Sisakht
- Faculty of Pharmacy, Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Vatanpour
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Kumar M, Mahmood S, Chopra S, Bhatia A. Biopolymer based nanoparticles and their therapeutic potential in wound healing - A review. Int J Biol Macromol 2024; 267:131335. [PMID: 38604431 DOI: 10.1016/j.ijbiomac.2024.131335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Nanoparticles (NPs) have been extensively investigated for their potential in nanomedicine. There is a significant level of enthusiasm about the potential of NPs to bring out a transformative impact on modern healthcare. NPs can serve as effective wound dressings or delivery vehicles due to their antibacterial and pro-wound-healing properties. Biopolymer-based NPs can be manufactured using various food-grade biopolymers, such as proteins, polysaccharides, and synthetic polymers, each offering distinct properties suitable for different applications which include collagen, polycaprolactone, chitosan, alginate, and polylactic acid, etc. Their biodegradable and biocompatible nature renders them ideal nanomaterials for applications in wound healing. Additionally, the nanofibers containing biopolymer-based NPs have shown excellent anti-bacterial and wound healing activity like silver NPs. These NPs represent a paradigm shift in wound healing therapies, offering targeted and personalized solutions for enhanced tissue regeneration and accelerated wound closure. The current review focuses on biopolymer NPs with their applications in wound healing.
Collapse
Affiliation(s)
- Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Shruti Chopra
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| | - Amit Bhatia
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India.
| |
Collapse
|
4
|
Sharda D, Kaur P, Choudhury D. Protein-modified nanomaterials: emerging trends in skin wound healing. DISCOVER NANO 2023; 18:127. [PMID: 37843732 PMCID: PMC10579214 DOI: 10.1186/s11671-023-03903-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/23/2023] [Indexed: 10/17/2023]
Abstract
Prolonged inflammation can impede wound healing, which is regulated by several proteins and cytokines, including IL-4, IL-10, IL-13, and TGF-β. Concentration-dependent effects of these molecules at the target site have been investigated by researchers to develop them as wound-healing agents by regulating signaling strength. Nanotechnology has provided a promising approach to achieve tissue-targeted delivery and increased effective concentration by developing protein-functionalized nanoparticles with growth factors (EGF, IGF, FGF, PDGF, TGF-β, TNF-α, and VEGF), antidiabetic wound-healing agents (insulin), and extracellular proteins (keratin, heparin, and silk fibroin). These molecules play critical roles in promoting cell proliferation, migration, ECM production, angiogenesis, and inflammation regulation. Therefore, protein-functionalized nanoparticles have emerged as a potential strategy for improving wound healing in delayed or impaired healing cases. This review summarizes the preparation and applications of these nanoparticles for normal or diabetic wound healing and highlights their potential to enhance wound healing.
Collapse
Affiliation(s)
- Deepinder Sharda
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Pawandeep Kaur
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
- Thapar Institute of Engineering and Technology-Virginia Tech Centre of Excellence for Emerging Materials, Thapar Institute of Engineering and Technology, Patiala, Punjab, 147004, India.
| |
Collapse
|
5
|
Elfawy LA, Ng CY, Amirrah IN, Mazlan Z, Wen APY, Fadilah NIM, Maarof M, Lokanathan Y, Fauzi MB. Sustainable Approach of Functional Biomaterials-Tissue Engineering for Skin Burn Treatment: A Comprehensive Review. Pharmaceuticals (Basel) 2023; 16:ph16050701. [PMID: 37242483 DOI: 10.3390/ph16050701] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Burns are a widespread global public health traumatic injury affecting many people worldwide. Non-fatal burn injuries are a leading cause of morbidity, resulting in prolonged hospitalization, disfigurement, and disability, often with resulting stigma and rejection. The treatment of burns is aimed at controlling pain, removing dead tissue, preventing infection, reducing scarring risk, and tissue regeneration. Traditional burn wound treatment methods include the use of synthetic materials such as petroleum-based ointments and plastic films. However, these materials can be associated with negative environmental impacts and may not be biocompatible with the human body. Tissue engineering has emerged as a promising approach to treating burns, and sustainable biomaterials have been developed as an alternative treatment option. Green biomaterials such as collagen, cellulose, chitosan, and others are biocompatible, biodegradable, environment-friendly, and cost-effective, which reduces the environmental impact of their production and disposal. They are effective in promoting wound healing and reducing the risk of infection and have other benefits such as reducing inflammation and promoting angiogenesis. This comprehensive review focuses on the use of multifunctional green biomaterials that have the potential to revolutionize the way we treat skin burns, promoting faster and more efficient healing while minimizing scarring and tissue damage.
Collapse
Affiliation(s)
- Loai A Elfawy
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Chiew Yong Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ibrahim N Amirrah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Zawani Mazlan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Adzim Poh Yuen Wen
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Department of Surgery, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
6
|
Recent advances in carboxymethyl chitosan-based materials for biomedical applications. Carbohydr Polym 2023; 305:120555. [PMID: 36737218 DOI: 10.1016/j.carbpol.2023.120555] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/12/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Chitosan (CS) and its derivatives have been applied extensively in the biomedical field owing to advantageous characteristics including biodegradability, biocompatibility, antibacterial activity and adhesive properties. The low solubility of CS at physiological pH limits its use in systems requiring higher dissolving ability and a suitable drug release rate. Besides, CS can result in fast drug release because of its high swelling degree and rapid water absorption in aqueous media. As a water-soluble derivative of CS, carboxymethyl chitosan (CMC) has certain improved properties, rendering it a more suitable candidate for wound healing, drug delivery and tissue engineering applications. This review will focus on the antibacterial, anticancer and antitumor, antioxidant and antifungal bioactivities of CMC and the most recently described applications of CMC in wound healing, drug delivery, tissue engineering, bioimaging and cosmetics.
Collapse
|
7
|
Cai X, He Y, Cai L, Zhan J, Li Q, Zhong S, Hou H, Wang W, Qiu X. An injectable elastic hydrogel crosslinked with curcumin-gelatin nanoparticles as a multifunctional dressing for the rapid repair of bacterially infected wounds. Biomater Sci 2023; 11:3227-3240. [PMID: 36935633 DOI: 10.1039/d2bm02126a] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Injectable self-healing hydrogel dressings with excellent elasticity and multifunctional repair effects have been in high demand in wound healing applications, while maintaining stable elasticity in injectable multifunctional hydrogel dressings is still a challenge. Based on carboxymethyl chitosan (CMCS), curcumin-gelatin nanoparticles (CG NPs), and sodium alginate oxide (OSA), we developed a double-crosslinking injectable elastic self-healing hydrogel without any chemical cross-linking agent as a multifunctional wound healing dressing. CG NPs were more stable than pure curcumin (Cur) nanoparticles and could regulate the cross-linking of injectable hydrogels for high elasticity and rapid self-healing. We found that the CG NPs endowed the injectable hydrogel with good anti-inflammatory, antibacterial, and reactive oxygen scavenging activities and could significantly shorten the wound healing time in infected full-thickness skin defect rats by promoting the polarization of M2-type macrophages, reducing oxidative damage, accelerating collagen deposition, enhancing granulation formation, and elevating angiogenesis. Taken together, the tunable elastic injectable hydrogel dressing exhibited a long-term service life with sustained repair function and can be taken as an optimal candidate for bacteria-infected wound healing.
Collapse
Affiliation(s)
- Xiaohui Cai
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Yutong He
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Liu Cai
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Jiamian Zhan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Qian Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Saiqiong Zhong
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510900, P. R. China
| | - Honghao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Wenya Wang
- School of Pharmaceutical Science, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
8
|
Ahmed KK, Wongrakpanich A. Particles-based medicated wound dressings: a comprehensive review. Ther Deliv 2023; 13:489-505. [PMID: 36779372 DOI: 10.4155/tde-2022-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Wound healing is a dynamic process that is controlled by many factors. The interest in developing wound dressings capable of providing the required environment for the proper wound healing process is ever expanding, and particles occupy a sizable share of the research area. This comprehensive review reports 10 years of research in terms of current advances, delivery system evaluation, outcomes and future directions. The review follows a clearly defined method of article search and screening. Retrieved papers are reviewed regarding the materials, formulation development, and in vitro/in vivo testing of particles-based wound dressings. The review summarized the current status of medicated wound dressing research, identifies gaps to be addressed, and represents a reference for researchers working on wound dressings.
Collapse
Affiliation(s)
- Kawther Khalid Ahmed
- University of Baghdad, College of Pharmacy, Department of Pharmaceutics, Bab-almoadham, P.O.Box 14026, Baghdad, Iraq
- University of Iowa College of Pharmacy, IA, USA
| | - Amaraporn Wongrakpanich
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok, 10400, Thailand
| |
Collapse
|
9
|
Montazeri S, Rastegari A, Mohammadi Z, Nazari M, Yousefi M, Samadi FY, Najafzadeh S, Aghsami M. Chitosan nanoparticle loaded by epidermal growth factor as a potential protein carrier for wound healing: In vitro and in vivo studies. IET Nanobiotechnol 2023; 17:204-211. [PMID: 36734307 DOI: 10.1049/nbt2.12116] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/28/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Epidermal growth factor (EGF) can be efficiently used in wound healing process; but the main obstacle of its clinical use is its susceptibility to proteolysis and maintaining its effective concentration in the site of action. In this study, chitosan nanoparticles containing EGF is formulated using a simple method to increase its stability in physiological pH as well as protect its biological activity and effectiveness in wound healing process. Nanoparticles with different ratios of chitosan/EGF were prepared and evaluated in vitro and in vivo. Obtained results showed nanoparticles with 2:1 ratio of chitosan/EGF were able to release 80% of encapsulated protein after 12 h. Cell proliferation study demonstrated that prepared nanoparticles could protect EGF functionality in physiological pH. In vivo results showed that nanoparticles with 2:1 ratio of chitosan/EGF could significantly accelerate the wound closure-rate, re-epithelialisation and collagen deposition. In conclusion, the designed nanoparticles in optimal ratio can be considered as a potential vehicle for EGF delivery to wounds with the aim of improving healing process.
Collapse
Affiliation(s)
- Samaneh Montazeri
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.,Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ali Rastegari
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Mohammadi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Nazari
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Maryam Yousefi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Fatemeh Yazdi Samadi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Somayeh Najafzadeh
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mehdi Aghsami
- Department of Pharmacology and Toxicology, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Shaheen TI, Abdelhameed MF, Zaghloul S, Montaser AS. In vivo assessment of the durable, green and in situ bio-functional cotton fabrics based carboxymethyl chitosan nanohybrid for wound healing application. Int J Biol Macromol 2022; 209:485-497. [PMID: 35398385 DOI: 10.1016/j.ijbiomac.2022.04.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
Herein, a newly developed approach for durable antibacterial cotton fabrics coated carboxymethyl chitosan (CMCs) via ionic crosslinking driven by cationization of cotton surface (CC) with 3-chloro-2-hydroxyl propyl-trimethyl ammonium chloride (CHTAC). In this regard, the novelty was extended to impart a highly antibacterial activity through harnessing of the as-functionalized CMCs/CC in situ preparation of AgNPs, without using of hazardous reductants. The antibacterial activity of the in situ prepared AgNPs onto CMCs/CC as well as the in vivo study on the rat lab were investigated to evaluate their healing efficiency, pathological tissues and biomarkers. Results affirmed that the treatment of CC with 10% of CMCs was adequate to achieve the highest swelling ratio which, in turns, is able to in situ deposition of AgNPs with a size range of 2-10 nm onto CC/CMCs rendering them a highly durable antibacterial activity against both Gram +Ve and Gram -Ve bacteria, which had a bacterial reduction of 98% to 86% after 20 washing cycles. Furthermore, the in vivo study revealed effectively the advantageous uses of the cotton functionalized with AgNPs compared to CC/CMCs in wound healing via alleviating the oxidative stress and promoting hyaluronic acid in wounded skin as well as increasing RUNX2 in healed skin tissues.
Collapse
Affiliation(s)
- Tharwat I Shaheen
- Institute of Textile Research and Technology, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| | - Mohamed F Abdelhameed
- Department of Pharmacology, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| | - Saad Zaghloul
- Institute of Textile Research and Technology, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| | - A S Montaser
- Institute of Textile Research and Technology, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
11
|
Loo HL, Goh BH, Lee LH, Chuah LH. Application of chitosan nanoparticles in skin wound healing. Asian J Pharm Sci 2022; 17:299-332. [PMID: 35782330 PMCID: PMC9237591 DOI: 10.1016/j.ajps.2022.04.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022] Open
Abstract
The rising prevalence of impaired wound healing and the consequential healthcare burdens have gained increased attention over recent years. This has prompted research into the development of novel wound dressings with augmented wound healing functions. Nanoparticle (NP)-based delivery systems have become attractive candidates in constructing such wound dressings due to their various favourable attributes. The non-toxicity, biocompatibility and bioactivity of chitosan (CS)-based NPs make them ideal candidates for wound applications. This review focusses on the application of CS-based NP systems for use in wound treatment. An overview of the wound healing process was presented, followed by discussion on the properties and suitability of CS and its NPs in wound healing. The wound healing mechanisms exerted by CS-based NPs were then critically analysed and discussed in sections, namely haemostasis, infection prevention, inflammatory response, oxidative stress, angiogenesis, collagen deposition, and wound closure time. The results of the studies were thoroughly reviewed, and contradicting findings were identified and discussed. Based on the literature, the gap in research and future prospects in this research area were identified and highlighted. Current evidence shows that CS-based NPs possess superior wound healing effects either used on their own, or as drug delivery vehicles to encapsulate wound healing agents. It is concluded that great opportunities and potentials exist surrounding the use of CSNPs in wound healing.
Collapse
|
12
|
Azzazy HMES, Fahmy SA, Mahdy NK, Meselhy MR, Bakowsky U. Chitosan-Coated PLGA Nanoparticles Loaded with Peganum harmala Alkaloids with Promising Antibacterial and Wound Healing Activities. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2438. [PMID: 34578755 PMCID: PMC8464825 DOI: 10.3390/nano11092438] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/18/2022]
Abstract
Wound healing is a major healthcare concern, and complicated wounds may lead to severe outcomes such as septicemia and amputations. To date, management choices are limited, which warrants the search for new potent wound healing agents. Natural products loaded in poly (lactic-co-glycolic acid) (PLGA) coated with chitosan (CS) constitute a promising antibacterial wound healing formulation. In this work, harmala alkaloid-rich fraction (HARF) loaded into PLGA nanoparticles coated with chitosan (H/CS/PLGA NPs) were designed using the emulsion-solvent evaporation method. Optimization of the formulation variables (HARF: PLGA and CS: PLGA weight ratios, sonication time) was performed using the 33 Box-Behnken design (BBD). The optimal NPs were characterized using transmission electron microscopy (TEM) and Attenuated Total Reflection Fourier-Transformed Infrared Spectroscopy (ATR-FTIR). The prepared NPs had an average particle size of 202.27 ± 2.44 nm, a PDI of 0.23 ± 0.01, a zeta potential of 9.22 ± 0.94 mV, and an entrapment efficiency of 86.77 ± 4.18%. In vitro drug release experiments showed a biphasic pattern where an initial burst of 82.50 ± 0.20% took place in the first 2 h, which increased to 87.50 ± 0.50% over 72 h. The designed optimal H/CS/PLGA NPs exerted high antibacterial activity against Staphylococcus aureus and Escherichia coli (MIC of 0.125 and 0.06 mg/mL, respectively) compared to unloaded HARF (MIC of 0.50 mg/mL). The prepared nanoparticles were found to be biocompatible when tested on human skin fibroblasts. Moreover, the wound closure percentage after 24 h of applying H/CS/PLGA NPs was found to be 94.4 ± 8.0%, compared to free HARF and blank NPs (68.20 ± 5.10 and 50.50 ± 9.40%, respectively). In conclusion, the three components of the developed nanoformulation (PLGA, chitosan, and HARF) have synergistic antibacterial and wound healing properties for the management of infected wounds.
Collapse
Affiliation(s)
- Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt; (S.A.F.); (N.K.M.)
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt; (S.A.F.); (N.K.M.)
| | - Noha Khalil Mahdy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt; (S.A.F.); (N.K.M.)
| | - Meselhy Ragab Meselhy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt;
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| |
Collapse
|
13
|
Butter oil (ghee) enrichment with aromatic plants: Chemical characterization and effects on fibroblast migration in anin-vitro wound healing model. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|