1
|
Liu X, Cao L, Jiang C, Wang H, Zhang X, Liu Q, Li H, Tang Y, Feng Y. Fabrication of multifunctional hybrid pigment for color cosmetics based on chitosan-modified palygorskite and sappanwood extract. Int J Biol Macromol 2024; 279:135259. [PMID: 39233175 DOI: 10.1016/j.ijbiomac.2024.135259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/18/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Consumer perception and market demand have driven the replacement of synthetic colorants with naturally derived alternatives in the cosmetic industry. This study describes a facile way to prepare durable inorganic-organic hybrid pigment with advanced biocompatibility, antibacterial and hydrophobic properties tailored for color cosmetics by initial modification of palygorskite with chitosan to anchor sappanwood dye extract and subsequently coating with amino-modified silicone oil (ASO). The hybrid pigments were characterized by transmittance electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and the Brunauer-Emmett-Teller method. The results indicated that the sappanwood dye was loaded on chitosan-modified palygorskite via hydrogen bonding and electrostatic interaction. Furthermore, the chitosan-palygorskite/sappanwood hybrid pigment exhibited enhanced biocompatibility and color stability on exposure to different heating temperatures and UVA radiation after subsequent hydrophobic modification with amino-modified silicone oil. Moreover, facial foundation cosmetics based on the chitosan-palygorskite/sappanwood@ASO composites exhibited excellent brightening and skin color corrective effect on human volunteers without any adverse response. And no significant difference was observed in 12 out of 14 sensory evaluation indexes in the comparison of this hybrid pigment-based makeup with two commercially available products. This study provides a new route to stabilize natural botanical colorant for cosmetic use by chitosan-modified clay minerals.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Lihua Cao
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Chao Jiang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huimin Wang
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xi Zhang
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Qi Liu
- Beijing EWISH Testing Technology Co., Ltd, Beijing 100142, China
| | - Huiyu Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ying Tang
- Beijing Key Laboratory of Plant Resources Research and Development, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Yongjun Feng
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Cinà G, Massaro M, Cavallaro G, Lazzara G, Sánchez-Espejo R, Viseras Iborra C, D'Abrosca B, Fiorentino A, Messina GML, Riela S. Development of alginate film filled with halloysite-carbon dots for active food packaging. Int J Biol Macromol 2024; 277:134375. [PMID: 39094878 DOI: 10.1016/j.ijbiomac.2024.134375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
The development of functional bionanocomposites for active food packaging is of current interest to replace non-biodegradable plastic coatings. In the present work, we report the synthesis of an alginate-based nanocomposite filled with modified halloysite nanotubes (HNTs) to develop coatings with improved barrier properties for food packaging. Firstly, HNTs were chemically modified by the introduction of carbon dots units (CDs) onto their external surface (HNTs-CDs) obtaining a nanomaterial where CDs are uniformly present onto the tubes as verified by morphological investigations, with good UV absorption and antioxidant properties. Afterwards, these were dispersed in the alginate matrix to obtain the alginate/HNTs-CDs nanocomposite (Alg/HNTs-CDs) whose morphology was imaged by AFM measurements. The UV and water barrier properties (in terms of moisture content and water vapor permeability) were investigated, and the antioxidant properties were evaluated as well. To confer some antimicrobial properties to the final nanocomposite, the synthetized filler was loaded with a natural extract (E) from M. cisplatensis. Finally, the extract kinetic release both from the filler and from the nanocomposite was studied in a medium mimicking a food simulant and preliminary studies on the effect of Alg/HNTs-CDs/E on coated and uncoated fruits, specifically apples and bananas were also carried out.
Collapse
Affiliation(s)
- Giuseppe Cinà
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, Ed. 17, 90128 Palermo, Italy
| | - Marina Massaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, Ed. 17, 90128 Palermo, Italy
| | - Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica E. Segrè (DiFC), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, Ed. 17, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), I-50121 Firenze, Italy
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica E. Segrè (DiFC), Università di Palermo, Viale delle Scienze, Parco d'Orleans II, Ed. 17, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), I-50121 Firenze, Italy.
| | - Rita Sánchez-Espejo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - César Viseras Iborra
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain; Andalusian Institute of Earth Sciences, CSIC-UGR, 18100 Armilla, Granada, Spain
| | - Brigida D'Abrosca
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, DiSTABiF University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Antonio Fiorentino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, DiSTABiF University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Grazia M L Messina
- Dipartimento di Scienze Chimiche (DSC), Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Serena Riela
- Dipartimento di Scienze Chimiche (DSC), Università di Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| |
Collapse
|
3
|
Hernández-Rangel A, Silva-Bermudez P, Almaguer-Flores A, García VI, Esparza R, Luna-Bárcenas G, Velasquillo C. Development and characterization of three-dimensional antibacterial nanocomposite sponges of chitosan, silver nanoparticles and halloysite nanotubes. RSC Adv 2024; 14:24910-24927. [PMID: 39131504 PMCID: PMC11310750 DOI: 10.1039/d4ra04274c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
In this work, we developed novel nanocomposite three-dimensional (3D) scaffolds composed of chitosan (CTS), halloysite nanotubes (HNTs) and silver nanoparticles (AgNPs) with enhanced antimicrobial activity and fibroblast cell compatibility for their potential use in wound dressing applications. A stock CTS-HNT solution was obtained by mixing water-dispersed HNTs with CTS aqueous-acid solution, and then, AgNPs, in different concentrations, were synthesized in the CTS-HNT solution via a CTS-mediated in situ reduction method. Finally, freeze-gelation was used to obtain CTS-HNT-AgNP 3D porous scaffolds (sponges). Morphology analysis showed that synthesized AgNPs were spherical with an average diameter of 11 nm. HNTs' presence did not affect the AgNPs morphology or size but improved the mechanical properties of the scaffolds, where CTS-HNT sponges exhibited a 5 times larger compression stress than bare-CTS sponges. AgNPs in the scaffolds further increased their mechanical strength in correlation to the AgNP concentration, and conferred them improved antibacterial activity against Gram-negative and Gram-positive bacteria, inhibiting the planktonic proliferation and adhesion of bacteria in a AgNP concentration depending on manner. In vitro cell viability and immunofluorescence assays exhibited that human fibroblast (HF) culture was supported by the sponges, where HF retained their phenotype upon culture on the sponges. Present CTS-HNT-AgNP sponges showed promising mechanical, antibacterial and cytocompatibility properties to be used as potential scaffolds for wound dressing applications.
Collapse
Affiliation(s)
- A Hernández-Rangel
- Instituto Politécnico Nacional, ESIQIE Av. IPN S/N Zacatenco Mexico City 07738 Mexico
| | - P Silva-Bermudez
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra 14389 Ciudad de México Mexico
| | - A Almaguer-Flores
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México 04510 Ciudad de México Mexico
| | - V I García
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México 04510 Ciudad de México Mexico
| | - R Esparza
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México Boulevard Juriquilla 3001 Santiago de Querétaro 76230 Mexico
| | - G Luna-Bárcenas
- Centro de Investigación y de Estudios Avanzados del IPN 76230 Querétaro Mexico
| | - C Velasquillo
- Unidad de Ingeniería de Tejidos, Terapia Celular y Medicina Regenerativa, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra 14389 Ciudad de México Mexico
| |
Collapse
|
4
|
Zhang H, Xing C, Yan B, Lei H, Guan Y, Zhang S, Kang Y, Pang J. Paclitaxel Overload Supramolecular Oxidative Stress Nanoamplifier with a CDK12 Inhibitor for Enhanced Cancer Therapy. Biomacromolecules 2024; 25:3685-3702. [PMID: 38779908 DOI: 10.1021/acs.biomac.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Combination therapy has emerged as a promising approach for treating tumors, although there is room for improvement. This study introduced a novel strategy that combined the enhancement of apoptosis, ferroptosis, and DNA damage to improve therapeutic outcomes for prostate cancer. Specifically, we have developed a supramolecular oxidative stress nanoamplifier, which was comprised of β-cyclodextrin, paclitaxel, and ferrocene-poly(ethylene glycol). Paclitaxel within the system disrupted microtubule dynamics, inducing G2/M phase arrest and apoptosis. Concurrently, ferrocene utilized hydrogen peroxide to generate toxic hydroxyl radicals in cells through the Fenton reaction, triggering a cascade of reactive oxygen species expansion, reduction of glutathione levels, lipid peroxidation, and ferroptosis. The increased number of hydroxyl radicals and the inhibitory effect of THZ531 on DNA repair mechanisms exacerbated DNA damage within tumor cells. As expected, the supramolecular nanoparticles demonstrated excellent drug delivery ability to tumor cells or tissues, exhibited favorable biological safety in vivo, and enhanced the killing effect on prostate cancer.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Chengyuan Xing
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Binyuan Yan
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Hanqi Lei
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Yupeng Guan
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Shiqiang Zhang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Yang Kang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| | - Jun Pang
- Department of Urology, Kidney and Urology Center, Pelvic Floor Disorders Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, P. R. China
| |
Collapse
|
5
|
Verma D, Okhawilai M, Senthilkumar N, Subramani K, Incharoensakdi A, Raja GG, Uyama H. Augmentin loaded functionalized halloysite nanotubes: A sustainable emerging nanocarriers for biomedical applications. ENVIRONMENTAL RESEARCH 2024; 242:117811. [PMID: 38043896 DOI: 10.1016/j.envres.2023.117811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Clay minerals such as Halloysite nanotubes (HNTs), abundantly available green nanomaterial, exhibit a significant advantage in biomedical applications such as drug delivery, antibacterial and antimicrobials, tissue engineering or regeneration, etc. Because of the mesoporous structure and high absorbability, HNTs exhibit great potential as a nanocarrier in drug delivery applications. The sulfuric acid treatment enhances the surface area of the HNTs and thereby improves their drug-loading capacity by enlarging their lumen space/inner diameter. In the present investigation, based on the literature that supports the efficacy of drug loading after acid treatment, a dual treatment was performed to functionalize the HNTs surface. First, the HNTs were etched and functionalized using sulfuric acid. The acid-functionalized HNTs underwent another treatment using (3-aminopropyl) triethoxysilane (APTES) to better interact the drug molecules with the HNTs surfaces for efficient drug loading. Augmentin, a potential drug molecule of the penicillin group, was used for HNTs loading, and their antibacterial properties, cytotoxicity, and cumulative drug release (%) were evaluated. Different characterization techniques, such as X-ray diffractometer (XRD) and Fourier Transform Infra-Red (FT-IR), confirm the loading of Augmentin to the APTES@Acid HNTs. TEM images confirm the effective loading of the drug molecule with the HNTs. The drug encapsulation efficiency shows 40.89%, as confirmed by the Thermogravimetric Analysis (TGA). Also, the Augmentin-loaded APTES@Acid HNTs exhibited good antibacterial properties against E. coli and S. aureus and low cytotoxicity, as confirmed by the MTT assay. The drug release studies confirmed the sustainable release of Augmentin from the APTES@Acid HNTs. Hence, the treated HNTs can be considered as a potential nanocarrier for effectively delivering Augmentin and promoting enhanced therapeutic benefits.
Collapse
Affiliation(s)
- Deepak Verma
- International Graduate Program of Nanoscience and Technology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Manunya Okhawilai
- International Graduate Program of Nanoscience and Technology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand; Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand; Center of Excellence in Polymeric Materials for Medical Practice Devices, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Nangan Senthilkumar
- Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Karthik Subramani
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Aran Incharoensakdi
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand; Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand
| | - G Ganesh Raja
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, 1000000, Chile
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
6
|
Yan T, Hu C, Que Y, Song Y, Lu D, Gu J, Ren Y, He J. Chitosan coating enriched with biosynthetic CuO NPs: Effects on postharvest decay and quality of mango fruit. Int J Biol Macromol 2023; 253:126668. [PMID: 37660851 DOI: 10.1016/j.ijbiomac.2023.126668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
A chitosan-based nanocomposite film (CSC) was developed by mixing chitosan (CS, 2 %, v/v) and copper oxide nanoparticles (CuO NPs, 500 μg∙mL-1) synthesized using Alpinia officinarum extract for the safe storage of mango fruit. The effects of CuO NPs on the morphological, mechanical, thermal, physical and antifungal properties of the CS films and postharvest quality of mango fruit were determined. Scanning electron microscopy (SEM) analysis confirmed that CuO NPs were uniformly dispersed into the CS matrix. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) profiles showed that intermolecular H-bondings occurred between CS and CuO NPs, accompanied by decreased crystallinity and increased amorphous structure. In comparison to the pure CS film, addition of CuO NPs obviously improved the morphological, mechanical, thermal, physical and antifungal properties of CSC film. CSC coating treatment obviously delayed the fruit decay and yellowing, as well as reduced losses of weight and firmness of mango (Mangifera indica L.) fruit during the storage, when compared with the control and CS coating treatment. Meanwhile, it significantly decreased the respiration rate and ethylene generation and maintained high level of ascorbic acid (AsA), titratable acid (TA) and soluble sugar content (SSC) of the fruit during the storage. Notably, Cu presented in the CSC film was restrained to the peel, indicating that the CSC coated mango fruit had good edible safety. Principal component analysis (PCA) confirmed that CSC coating played a positive role in mango preservation. Therefore, CSC coating can be considered a potential application for successfully controlling of postharvest disease and prolonging the shelf life for mango fruit.
Collapse
Affiliation(s)
- Tengyu Yan
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Chunmei Hu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Yuqing Que
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Yaping Song
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Dandan Lu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Jinyu Gu
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Yanfang Ren
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China.
| | - Junyu He
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China.
| |
Collapse
|
7
|
Wu J, Chen Q, Wang W, Lin Y, Kang H, Jin Z, Zhao K. Chitosan Derivative-Based Microspheres Loaded with Fibroblast Growth Factor for the Treatment of Diabetes. Polymers (Basel) 2023; 15:3099. [PMID: 37514488 PMCID: PMC10386009 DOI: 10.3390/polym15143099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetes mellitus type 2 (T2DM) is a disease caused by genetic and environmental factors, and the main clinical manifestation is hyperglycemia. Currently, insulin injections are still the first-line treatment for diabetes. However, repeated injections may cause insulin resistance, hypoglycemia, and other serious side effects. Thus, it is imperative to develop new diabetes treatments. Protein-based diabetes drugs, such as fibroblast growth factor-21 (FGF-21), have a longer-lasting glycemic modulating effect with high biosafety. However, the instability of these protein drugs limits their applications. In this study, we extract protein hypoglycemic drugs with oral and injectable functions. The FGF-21 analog (NA-FGF) was loaded into the chitosan derivative-based nanomaterials, N-2-Hydroxypropyl trimethyl ammonium chloride chitosan/carboxymethyl chitosan (N-2-HACC/CMCS), to prepare NA-FGF-loaded N-2-HACC/CMCS microspheres (NA-FGF-N-2-HACC/CMCS MPs). It was well demonstrated that NA-FGF-N-2-HACC/CMCS MPs have great biocompatibility, biostability, and durable drug-release ability. In addition to injectable drug delivery, our prepared microspheres were highly advantageous for oral administration. The in vitro and in vivo experimental results suggested that NA-FGF-N-2-HACC/CMCS MPs could be used as a promising candidate and universal nano-delivery system for both oral and injectable hypoglycemic regulation.
Collapse
Affiliation(s)
- Jue Wu
- College of Chemistry and Material Sciences, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Qian Chen
- College of Chemistry and Material Sciences, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Wenfei Wang
- Bio-Pharmaceutical Lab, College of Life Sciences, Northeast Agricultural University, Harbin 150030, China
| | - Yuhong Lin
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Hong Kang
- College of Chemistry and Material Sciences, School of Life Science, Heilongjiang University, Harbin 150080, China
| | - Zheng Jin
- College of Chemistry and Material Sciences, School of Life Science, Heilongjiang University, Harbin 150080, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Kai Zhao
- College of Chemistry and Material Sciences, School of Life Science, Heilongjiang University, Harbin 150080, China
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou 318000, China
| |
Collapse
|
8
|
Riela S, Borrego-Sánchez A, Cauteruccio S, de Melo Barbosa R, Massaro M, Sainz-Díaz CI, Sánchez-Espejo R, Viseras-Iborra C, Licandro E. Exploiting the interaction between halloysite and charged PNAs for their controlled release. J Mater Chem B 2023; 11:6685-6696. [PMID: 37377023 DOI: 10.1039/d3tb00637a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The design and development of nanomaterials that could be used in nanomedicine are of fundamental importance to obtain smart nanosystems for the treatment of several diseases. Halloysite, because of its interesting features, represents a suitable nanomaterial for the delivery of different biologically active species. Among them, peptide nucleic acids (PNAs) have attracted considerable attention in recent decades for their potential applications in both molecular antisense diagnosis and as therapeutic agents, although up to now, the actual clinical applications have been very limited. Herein we report a systematic study on the supramolecular interaction of three differently charged PNAs with halloysite. Understanding the interaction mode of charged molecules with the clay surfaces represents a key factor for the future design and development of halloysite based materials which could be used for the delivery and subsequent intracellular release of PNA molecules. Thus, three different PNA tetramers, chosen as models, were synthesized and loaded onto the clay. The obtained nanomaterials were characterized using spectroscopic studies and thermogravimetric analysis, and their morphologies were studied using high angle annular dark field transmission electron microscopy (HAADF/STEM) coupled with Energy Dispersive X-ray spectroscopy (EDX). The aqueous mobility of the three different nanomaterials was investigated by dynamic light scattering (DLS) and ζ-potential measurements. The release of PNA tetramers from the nanomaterials was investigated at two different pH values, mimicking physiological conditions. Finally, to better understand the stability of the synthesized PNAs and their interactions with HNTs, molecular modelling calculations were also performed. The obtained results showed that PNA tetramers interact in different ways with HNT surfaces according to their charge which influences their kinetic release in media mimicking physiological conditions.
Collapse
Affiliation(s)
- Serena Riela
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo Viale delle Scienze, Ed. 17 90128 Palermo, Italy.
| | - Ana Borrego-Sánchez
- Instituto de Ciencia Molecular, Universitat de València, Carrer del Catedrátic José Beltrán Martinez 2, 46980 Paterna, Spain
| | - Silvia Cauteruccio
- Department of Chemistry, University of Milan, via Golgi 19 20133 Milan, Italy.
| | - Raquel de Melo Barbosa
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 s/n, Granada, Spain
| | - Marina Massaro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo Viale delle Scienze, Ed. 17 90128 Palermo, Italy.
| | - C Ignacio Sainz-Díaz
- Andalusian Institute of Earth Sciences, CSIC-UGR, Avenida de las Palmeras 4, 18100, Armilla, Granada, Spain
| | - Rita Sánchez-Espejo
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 s/n, Granada, Spain
| | - César Viseras-Iborra
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Campus of Cartuja, 18071 s/n, Granada, Spain
- Andalusian Institute of Earth Sciences, CSIC-UGR, Avenida de las Palmeras 4, 18100, Armilla, Granada, Spain
| | - Emanuela Licandro
- Department of Chemistry, University of Milan, via Golgi 19 20133 Milan, Italy.
| |
Collapse
|
9
|
Majeed S, Qaiser M, Shahwar D, Mahmood K, Ahmed N, Hanif M, Abbas G, Shoaib MH, Ameer N, Khalid M. Chitosan-coated halloysite nanotube magnetic microspheres for carcinogenic colorectal hemorrhage and liver laceration in albino rats. RSC Adv 2023; 13:21521-21536. [PMID: 37469962 PMCID: PMC10352712 DOI: 10.1039/d3ra01581e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023] Open
Abstract
Carcinogenic colorectal hemorrhage can cause severe blood loss and longitudinal ulcer, which ultimately become fatal if left untreated. The present study was aimed to formulate targeted release gemcitabine (GC)-containing magnetic microspheres (MM) of halloysite nanotubes (MHMG), chitosan (MCMG), and their combination (MHCMG). The preparation of MM by magnetism was confirmed by vibrating sample magnetometry (VSM), the molecular arrangement of NH2, alumina, and silica groups was studied by X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS), the hollow spherical nature of the proposed MM was observed by scanning electron microscopy (SEM), functional groups were characterized by Fourier transform infrared (FTIR) spectroscopy and thermochemical modification was studied by thermogravimetric analysis (TGA). In vitro thrombus formation showed a decreasing trend of hemostatic time for MMs in the order of MHMG3 < MCMG3 < MHCMG7, which was confirmed by whole blood clotting kinetics. Interestingly, rat tail amputation and liver laceration showed 3 folds increased clotting efficiency of optimized MHCMG7 compared to that of control. In vivo histopathological studies and cell viability assays confirmed the regeneration of epithelial cells. The negligible systemic toxicity of MHCMG7, more than 90% entrapment of GC and high % release in alkaline medium made the proposed MM an excellent candidate for the control of hemorrhage in colorectal cancer. Conclusively, the healing of muscularis and improved recovery of the colon from granulomas ultimately improved the therapeutic effects of GC-containing MMs. The combination of both HNT and CTS microspheres made them more targeted.
Collapse
Affiliation(s)
- Sajid Majeed
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan Pakistan
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan Pakistan
| | - Muhammad Qaiser
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan Pakistan
- Drug Testing Laboratory Punjab Multan Pakistan
| | - Dure Shahwar
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan Pakistan
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan Pakistan
| | - Nadeem Ahmed
- Center for Excellence in Molecular Biology, University of Punjab Pakistan
| | - Muhammad Hanif
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan Pakistan
| | - Ghulam Abbas
- Faculty of Pharmacy, GOVT College University Faisalabad Pakistan
| | | | - Nabeela Ameer
- Department of Pharmaceutics, Faculty of Pharmacy, Bahauddin Zakariya University Multan Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology Rahim Yar Khan Pakistan
| |
Collapse
|
10
|
Himiniuc LM, Socolov R, Nica I, Agop M, Volovat C, Ochiuz L, Vasincu D, Rotundu AM, Rosu IA, Ghizdovat V, Volovat SR. Theoretical and Experimental Aspects of Sodium Diclofenac Salt Release from Chitosan-Based Hydrogels and Possible Applications. Gels 2023; 9:gels9050422. [PMID: 37233013 DOI: 10.3390/gels9050422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Two formulations based on diclofenac sodium salt encapsulated into a chitosan hydrogel were designed and prepared, and their drug release was investigated by combining in vitro results with mathematical modeling. To understand how the pattern of drug encapsulation impacted its release, the formulations were supramolecularly and morphologically characterized by scanning electron microscopy and polarized light microscopy, respectively. The mechanism of diclofenac release was assessed by using a mathematical model based on the multifractal theory of motion. Various drug-delivery mechanisms, such as Fickian- and non-Fickian-type diffusion, were shown to be fundamental mechanisms. More precisely, in a case of multifractal one-dimensional drug diffusion in a controlled-release polymer-drug system (i.e., in the form of a plane with a certain thickness), a solution that allowed the model's validation through the obtained experimental data was established. The present research reveals possible new perspectives, for example in the prevention of intrauterine adhesions occurring through endometrial inflammation and other pathologies with an inflammatory mechanism background, such as periodontal diseases, and also therapeutic potential beyond the anti-inflammatory action of diclofenac as an anticancer agent, with a role in cell cycle regulation and apoptosis, using this type of drug-delivery system.
Collapse
Affiliation(s)
- Loredana Maria Himiniuc
- Department of Obstetrics and Gynecology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Razvan Socolov
- Department of Obstetrics and Gynecology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Irina Nica
- Department of Odontology-Periodontology, Fixed Prosthesis, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maricel Agop
- Department of Physics, "Gheorghe Asachi" Technical University of Iasi, 700050 Iasi, Romania
- Romanian Scientists Academy, 050094 Bucharest, Romania
| | - Constantin Volovat
- Department of Medical Oncology-Radiotherapy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Lacramioara Ochiuz
- Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Decebal Vasincu
- Department of Biophysics, Faculty of Dental Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ana Maria Rotundu
- Faculty of Physics, "Alexandru Ioan Cuza" University of Iasi, 700506 Iasi, Romania
| | - Iulian Alin Rosu
- Faculty of Physics, "Alexandru Ioan Cuza" University of Iasi, 700506 Iasi, Romania
| | - Vlad Ghizdovat
- Department of Biophysics and Medical Physics, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Simona Ruxandra Volovat
- Department of Medical Oncology-Radiotherapy, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| |
Collapse
|
11
|
Yang Z, Guan C, Zhou C, Pan Q, He Z, Wang C, Liu Y, Song S, Yu L, Qu Y, Li P. Amphiphilic chitosan/carboxymethyl gellan gum composite films enriched with mustard essential oil for mango preservation. Carbohydr Polym 2023; 300:120290. [DOI: 10.1016/j.carbpol.2022.120290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
|
12
|
Dube S, Rawtani D, Khatri N, Parikh G. A deep delve into the chemistry and biocompatibility of halloysite nanotubes: A new perspective on an idiosyncratic nanocarrier for delivering drugs and biologics. Adv Colloid Interface Sci 2022; 309:102776. [DOI: 10.1016/j.cis.2022.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022]
|
13
|
Balci E, Rosales E, Pazos M, Sofuoglu A, Sanroman MA. Continuous treatment of diethyl hexyl and dibutyl phthalates by fixed-bed reactor: Comparison of two esterase bionanocomposites. BIORESOURCE TECHNOLOGY 2022; 363:127990. [PMID: 36130686 DOI: 10.1016/j.biortech.2022.127990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
The removal of Diethyl hexyl phthalate (DEHP) and Dibutyl phthalate (DBP) is of great importance due to their potential adverse effects on the environment and human health. In this study, two bionanocomposites prepared by immobilization of Bacillus subtilis esterase by crosslinking to halloysite and supported in chitosan and alginate beads were studied and proposed as a green approach. The esterase immobilization was confirmed by physical-chemical characterization. Bionanocomposite using chitosan showed the best degradation levels in batch tests attaining complete degradation of DBP and around 90% of DEHP. To determine the operational stability and efficiency of the system, two fixed bed reactors filled with both bionanocomposites were carried out operating in continuous mode. Chitosan based bionanocomposite showed the best performance being able to completely remove DBP and more than 85% of DEHP at the different flowrates. These results proved the potential of these synthesized bionanocomposites to effectively remove Phthalic Acid Esters.
Collapse
Affiliation(s)
- Esin Balci
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, 36310 Vigo, Spain; Izmir Institute of Technology, Faculty of Engineering, Department of Environmental Engineering, 35430 Urla/İzmir, Turkey
| | - Emilio Rosales
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Marta Pazos
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, 36310 Vigo, Spain
| | - Aysun Sofuoglu
- Izmir Institute of Technology, Faculty of Engineering, Department of Chemical Engineering, 35430 Urla/İzmir, Turkey
| | - Maria Angeles Sanroman
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus Lagoas-Marcosende, 36310 Vigo, Spain.
| |
Collapse
|
14
|
Katti KS, Jasuja H, Jaswandkar SV, Mohanty S, Katti DR. Nanoclays in medicine: a new frontier of an ancient medical practice. MATERIALS ADVANCES 2022; 3:7484-7500. [PMID: 36324871 PMCID: PMC9577303 DOI: 10.1039/d2ma00528j] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Clays have been used as early as 2500 BC in human civilization for medicinal purposes. The ease of availability, biocompatibility, and versatility of these unique charged 2D structures abundantly available in nature have enabled the extensive applications of clays in human history. Recent advances in the use of clays in nanostructures and as components of polymer clay nanocomposites have exponentially expanded the use of clays in medicine. This review covers the details of structures and biomedical applications of several common clays, including montmorillonite, LAPONITE®, kaolinite, and halloysite. Here we describe the applications of these clays in wound dressings as hemostatic agents in drug delivery of drugs for cancer and other diseases and tissue engineering. Also reviewed are recent experimental and modeling studies that elucidate the impact of clay structures on cellular processes and cell adhesion processes. Various mechanisms of clay-mediated bioactivity, including protein localization, modulation of cell adhesion, biomineralization, and the potential of clay nanoparticles to impact cell differentiation, are presented. We also review the current developments in understanding the impact of clays on cellular responses. This review also elucidates new emerging areas of use of nanoclays in osteogenesis and the development of in vitro models of bone metastasis of cancer.
Collapse
Affiliation(s)
- Kalpana S Katti
- Department of Civil Construction and Environmental Engineering, North Dakota State University Fargo ND 58105 USA 701-231-9504
| | - Haneesh Jasuja
- Department of Civil Construction and Environmental Engineering, North Dakota State University Fargo ND 58105 USA 701-231-9504
| | - Sharad V Jaswandkar
- Department of Civil Construction and Environmental Engineering, North Dakota State University Fargo ND 58105 USA 701-231-9504
| | - Sibanwita Mohanty
- Department of Civil Construction and Environmental Engineering, North Dakota State University Fargo ND 58105 USA 701-231-9504
| | - Dinesh R Katti
- Department of Civil Construction and Environmental Engineering, North Dakota State University Fargo ND 58105 USA 701-231-9504
| |
Collapse
|
15
|
Visualization of degradation of injectable thermosensitive hydroxypropyl chitin modified by aggregation-induced emission. Carbohydr Polym 2022; 293:119739. [DOI: 10.1016/j.carbpol.2022.119739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022]
|
16
|
Xing C, Chen H, Guan Y, Zhang S, Tong T, Ding N, Luo T, Kang Y, Pang J. Cyclodextrin-based supramolecular nanoparticles break the redox balance in chemodynamic therapy-enhanced chemotherapy. J Colloid Interface Sci 2022; 628:864-876. [PMID: 36029600 DOI: 10.1016/j.jcis.2022.08.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022]
Abstract
Drug delivery based on abnormal features of the tumor microenvironment (TME) has attracted considerable interest worldwide. In this study, we proposed an applicable strategy to increase the reactive oxygen species (ROS) and inhibit glutathione (GSH), in an effort to amplify oxidative damage in prostate cancer cells. Specifically, we developed dual-responsive supramolecular self-assembled nanoparticles (NPs) based on polymerized methacrylic acid (MA) and polymerized poly(ethylene glycol) dimethyl acrylate-modified β-cyclodextrin (CD) with ferrocene (Fc)-connected (S) (+)-camptothecin (CPT) (designated as MA-CD/Fc-CPT NPs). The as-prepared negatively charged supramolecular NPs can be taken up by tumor cells successfully owing to their reversible negative-to-positive charge transition capacity at acidic pH. The supramolecular NPs increased ROS generation and decreased GSH to amplify oxidative stress and improve the therapeutic effect of chemotherapy. As expected, MA-CD/Fc-CPT NPs displayed good drug delivery capabilities to tumor cells or tissues. MA-CD/Fc-CPT NPs also inhibited cancer cell proliferation in both the cells and tissues. This result was partially due to increased ROS generation and decreased GSH, which contributed to more pronounced oxidative stress. The as-prepared supramolecular NPs displayed great biosafety to normal tissues. According to our results, negatively charged supramolecular MA-CD/Fc-CPT NPs are well-suited for drug delivery and improved cancer treatment in TMEs.
Collapse
Affiliation(s)
- Chengyuan Xing
- Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Huikun Chen
- Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yupeng Guan
- Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Shiqiang Zhang
- Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Tongyu Tong
- Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Ni Ding
- Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Tingting Luo
- Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Yang Kang
- Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China; Scientific Research Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jun Pang
- Department of Urology, Kidney and Urology Center, the Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
17
|
One-Pot Synthesis of Pyrite Nanoplates Supported on Chitosan Hydrochar as Fenton Catalysts for Organics Removal from Water. Catalysts 2022. [DOI: 10.3390/catal12080858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Fenton reaction is a powerful method for removing refractory pollutants from water, yet it is restricted by shortcomings such as pH adjustments and generation of iron-containing sludge. In this study, a highly dispersed pyrite nanoplate supported on chitosan hydrochar was prepared through a simple one-pot hydrothermal method. The interactions between chitosan and Fe3+ suppressed the accumulation of FeS2 in the crystal growth period and led to the formation of pyrite nanoplates with many exposed (210) facets. Thus, it showed excellent Fenton-like activity and the removal efficiency of AR 73 reached 99.9% within 60 min. The catalyst could be used in a wide pH range of 3~10. Hydroxyl radicals are the main reactive oxygen species in this catalytic system. The self-reduction of generated Fe(III) species by sulfur via inner electron transfer promoted the Fe(II)/Fe(III) redox cycle, and the presence of graphene facilitated the adsorption of pollutants. This catalyst also showed good reuse performances as well as stability, which has promising prospects for practical use in wastewater treatment.
Collapse
|
18
|
Naffakh M, Shuttleworth PS. Investigation of the Crystallization Kinetics and Melting Behaviour of Polymer Blend Nanocomposites Based on Poly(L-Lactic Acid), Nylon 11 and TMDCs WS 2. Polymers (Basel) 2022; 14:2692. [PMID: 35808736 PMCID: PMC9269272 DOI: 10.3390/polym14132692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of this work was to study the crystallization kinetics and melting behaviour of polymer blend nanocomposites based on poly (L-lactic acid) (PLLA), nylon 11 and tungsten disulfide nanotubes (INT-WS2), which are layered transition metal dichalcogenides (TMDCs), using non-isothermal differential scanning calorimetry (DSC). Blends containing different nylon 11 contents ranging from 20 to 80 wt.% with or without INT-WS2 were prepared by melt mixing. Evaluation of their morphology with high-resolution SEM imaging proved that the incorporation of inorganic nanotubes into the immiscible PLLA/nylon 11 mixtures led to an improvement in the dispersibility of the nylon 11 phase, a reduction in its average domain size and, consequently, an increase in its interfacial area. The crystallization temperatures of these PLLA/nylon 11-INT blends were influenced by the cooling rate and composition. In particular, the DSC results appear to demonstrate that the 1D-TMDCs WS2 within the PLLA/nylon 11-INT blend nanocomposites initiated nucleation in both polymeric components, with the effect being more pronounced for PLLA. Moreover, the nucleation activity and activation energy were calculated to support these findings. The nucleation effect of INT-WS2, which influences the melting behaviour of PLLA, is highly important, particularly when evaluating polymer crystallinity. This study opens up new perspectives for the development of advanced PLA-based nanomaterials that show great potential for ecological and biomedical applications.
Collapse
Affiliation(s)
- Mohammed Naffakh
- Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid (ETSII-UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Peter S. Shuttleworth
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain;
| |
Collapse
|
19
|
Paul A, Augustine R, Hasan A, Zahid AA, Thomas S, Agatemor C, Ghosal K. Halloysite nanotube and chitosan polymer composites: Physicochemical and drug delivery properties. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103380] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Amiri Z, Malmir M, Hosseinnejad T, Kafshdarzadeh K, Heravi MM. Combined experimental and computational study on Ag-NPs immobilized on rod-like hydroxyapatite for promoting Hantzsch reaction. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Hu H, Liu X, Hong J, Ye N, Xiao C, Wang J, Li Z, Xu D. Mesoporous polydopamine-based multifunctional nanoparticles for enhanced cancer phototherapy. J Colloid Interface Sci 2022; 612:246-260. [PMID: 34995863 DOI: 10.1016/j.jcis.2021.12.172] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/12/2021] [Accepted: 12/26/2021] [Indexed: 01/10/2023]
Abstract
Cancer phototherapy has attracted increasing attention for its effectiveness, relatively low side effect, and noninvasiveness. The combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has been shown to exhibit promising prospects in cancer treatment. However, the tumor hypoxia, high level of intracellular glutathione (GSH), and insufficient photosensitizer uptake significantly limit the PDT efficacy. In this work, we combine oxygen supply, GSH depletion, and tumor targeting in one nanoplatform, folate-decorated mesoporous polydopamine nanoparticles (FA-MPPD) co-loaded with new indocyanine green (IR-820) and perfluorooctane (PFO) (IR-820/PFO@FA-MPPD), to overcome the PDT resistance for enhanced cancer PDT/PTT. IR-820/PFO@FA-MPPD exhibit efficient singlet oxygen generation and photothermal effect under 808 nm laser irradiation, GSH-promoted IR-820 release, and efficient cellular uptake, resulting in high intracellular reactive oxygen species (ROS) level under 808 nm laser irradiation and strong photocytotoxicity in vitro. Following intratumoral injection, IR-820/PFO@FA-MPPD can relieve tumor hypoxia sustainably by PFO-mediated oxygen transport and deplete intracellular GSH by the Michael addition reaction, which boost the PDT effect and lead to the most potent antitumor effect upon 808 nm laser irradiation. The multifunctional IR-820/PFO@FA-MPPD developed in this work offer a relatively simple and effective strategy to potentiate PDT for efficient cancer phototherapy.
Collapse
Affiliation(s)
- Hang Hu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xin Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Hong
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Ningbing Ye
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan, China.
| | - Defeng Xu
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
22
|
Doustdar F, Olad A, Ghorbani M. Development of a novel reinforced scaffold based on chitosan/cellulose nanocrystals/halloysite nanotubes for curcumin delivery. Carbohydr Polym 2022; 282:119127. [DOI: 10.1016/j.carbpol.2022.119127] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/20/2022]
|
23
|
Bu W, Dong GK, Da WW, Zhang GX, Liu HM, Ju XY, Li RP, Yuan B. Salvianolic acid-modified chitosan particle for shift intestinal microbiota composition and metabolism to reduce benzopyrene toxicity for mice. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Zhong X, Di Z, Xu Y, Liang Q, Feng K, Zhang Y, Di L, Wang R. Mineral medicine: from traditional drugs to multifunctional delivery systems. Chin Med 2022; 17:21. [PMID: 35144660 PMCID: PMC8830990 DOI: 10.1186/s13020-022-00577-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
Mineral drugs are an important constituent of traditional Chinese medicine (TCM). Taking minerals that contain heavy metals as drugs is a very national characteristic part of TCM. However, the safety and scientific nature of mineral drugs are controversial owing to their heavy metals and strong toxicity. In 2000, the Food and Drug Administration (FDA) authorized arsenic trioxide (ATO) as first-line therapy for acute promyelocytic leukemia. This makes the development and utilization of mineral drugs become a research hotspot. The development of nanomedicine has found a great prospect of mineral drugs in nano-delivery carriers. And that will hold promise to address the numerous biological barriers facing mineral drug formulations. However, the studies on mineral drugs in the delivery system are few at present. There is also a lack of a detailed description of mineral drug delivery systems. In this review, the advanced strategies of mineral drug delivery systems in tumor therapy are summarized. In addition, the therapeutic advantages and research progress of novel mineral drug delivery systems are also discussed. Here, we hope that this will provide a useful reference for the design and application of new mineral drug delivery systems.
Collapse
Affiliation(s)
- Xiaoqing Zhong
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Zhenning Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Yuanxin Xu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Qifan Liang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Kuanhan Feng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Yuting Zhang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China.,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China
| | - Liuqing Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China.
| | - Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Provincial TCM Engineering Technology Research Center of High Efficient Drug Delivery System, Nanjing, 210023, China.
| |
Collapse
|
25
|
Yan M, Shi J, Tang S, Zhou G, Zeng J, Zhang Y, Zhang H, Yu Y, Guo J. Dynamically United Double Network Structure Based on Polydopamine to Enhance pH‐Sensitive Seaweed‐Based Film for Medicine. ChemistrySelect 2022. [DOI: 10.1002/slct.202102682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ming Yan
- School of Textile and Material Engineering Dalian Polytechnic University Dalian 116034 China
| | - Junfeng Shi
- School of Textile and Material Engineering Dalian Polytechnic University Dalian 116034 China
| | - Song Tang
- School of Textile and Material Engineering Dalian Polytechnic University Dalian 116034 China
| | - Guohang Zhou
- School of Textile and Material Engineering Dalian Polytechnic University Dalian 116034 China
| | - Jiexiang Zeng
- School of Textile and Material Engineering Dalian Polytechnic University Dalian 116034 China
| | - Yixin Zhang
- School of Textile and Material Engineering Dalian Polytechnic University Dalian 116034 China
| | - Hong Zhang
- School of Textile and Material Engineering Dalian Polytechnic University Dalian 116034 China
| | - Yue Yu
- School of Textile and Material Engineering Dalian Polytechnic University Dalian 116034 China
| | - Jing Guo
- School of Textile and Material Engineering Dalian Polytechnic University Dalian 116034 China
| |
Collapse
|
26
|
Surendhiran D, Roy VC, Park JS, Chun BS. Fabrication of chitosan-based food packaging film impregnated with turmeric essential oil (TEO)-loaded magnetic-silica nanocomposites for surimi preservation. Int J Biol Macromol 2022; 203:650-660. [PMID: 35122800 DOI: 10.1016/j.ijbiomac.2022.01.178] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/18/2022]
Abstract
Successful modification of chitosan (CS) film using magnetic-silica nanocomposite to encapsulate turmeric essential oil (TEO) obtained by super critical CO2 extraction for enhanced preservation of surimi was performed. TEO exhibited antioxidant and antibacterial activities against Bacillus cereus. The core magnetic nanoparticles (MNPs) were capped with porous silica (Si) to form core-shell nanocomposites, into which TEO was loaded with 75.24% encapsulation efficiency. The fabricated nanocomposite was characterized, blended with CS to cast a bionanocomposite active film and characterized for efficient impregnation of bionanocomposite. The physical and mechanical properties of film were significantly improved after adding MNPs/Si/TEO nanocomposite. Uncontrolled release of TEO from CS film resulted in bacterial growth after 6 days of storage whereas bionanocomposites exhibited a sustained release of TEO that controlled the microbial load from 4.0 log CFU/g to 2.78 log CFU/g over 14 days. The overall study demonstrated that the CS/MNPs/Si/TEO bionanocomposite film was efficient as a packaging material for prolonged shelf-life of surimi.
Collapse
Affiliation(s)
| | - Vikash Chandra Roy
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan, 48513, Republic of Korea; Department of Fisheries Technology, Hajee Mohammad Danesh Science and Technology University, Dinajpur 5200, Bangladesh
| | - Jin-Seok Park
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan, 48513, Republic of Korea
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
27
|
Sustainability in Heritage Wood Conservation: Challenges and Directions for Future Research. FORESTS 2021. [DOI: 10.3390/f13010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Conserving the world’s cultural and natural heritage is considered a key contributor to achieving the targets set out in the United Nation’s Sustainable Development Goals, yet how much attention do we pay to the methods we use to conserve and protect this heritage? With a specific focus on wooden objects of cultural heritage, this review discusses the current state-of-the-art in heritage conservation in terms of sustainability, sustainable alternatives to currently used consolidants, and new research directions that could lead to more sustainable consolidants in the future. Within each stage a thorough discussion of the synthesis mechanisms and/or extraction protocols, particularly for bio-based resources is provided, evaluating resource usage and environmental impact. This is intended to give the reader a better understanding of the overall sustainability of each different approach and better evaluate consolidant choices for a more sustainable approach. The challenges facing the development of sustainable consolidants and recent research that is likely to lead to highly sustainable new consolidant strategies in the future are also discussed. This review aims to contribute to the ongoing discussion of sustainable conservation and highlight the role that consolidants play in truly sustainable heritage conservation.
Collapse
|
28
|
Liu Y, Qin X, Rogachev A, Rogachev A, Kontsevaya I, Pyzh A, Jiang X, Yarmolenko V, Rudenkov A, Yarmolenko M. Structure and properties of microcellulose-based coatings deposited via a low-energy electron beam and their effect on the properties of onto wound dressings. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
29
|
Kim H, Lee J, Sadeghi K, Seo J. Controlled self-release of ClO2 as an encapsulated antimicrobial agent for smart packaging. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Immobilized Enzymes-Based Biosensing Cues for Strengthening Biocatalysis and Biorecognition. Catal Letters 2021. [DOI: 10.1007/s10562-021-03866-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
31
|
Bharate SS. Enhancing Biopharmaceutical Attributes of Khellin by Amorphous Binary Solid Dispersions. AAPS PharmSciTech 2021; 22:260. [PMID: 34705156 DOI: 10.1208/s12249-021-02126-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/23/2021] [Indexed: 01/16/2023] Open
Abstract
Khellin, a furanochromone isolated from fruits and seeds of Ammi visnaga, is traditionally used in many eastern Mediterranean countries. The plant decoction and the crystalline substance khellin have many pharmacological activities. For instance, it acts as a bronchodilator and also relieves renal colic and urethral stones, etc. However, the low water solubility (~ 120 µg/mL) and low bioavailability limit its therapeutic application. Thus, the present research explores the development of its binary and ternary solid dispersion formulations to improve its solubility and dissolution behavior. A 24-well plate miniaturized protocol was established to identify the optimal hydrophilic polymer to prepare its solid dispersions. PEG-4000 was recognized as the favorable hydrophilic carrier in preparation of solid dispersion, SSB17. The formulation displayed ~ five-fold enhancement in the aqueous solubility of khellin. The binary solid dispersion SSB17 was manufactured at a gram scale and evaluated using 1H-NMR, 13C-NMR, FT-IR, p-XRD, SEM, DSC, in vitro dissolution, and predicted pharmacokinetics. The quantitative dissolution data of SSB17 demonstrated ~ 2-3-fold improvement in AUC at physiological pH conditions. These conclusions highlight the basis for further preclinical studies on solid dispersions of khellin with improved biopharmaceutical properties.
Collapse
|
32
|
Cherednichenko K, Kopitsyn D, Batasheva S, Fakhrullin R. Probing Antimicrobial Halloysite/Biopolymer Composites with Electron Microscopy: Advantages and Limitations. Polymers (Basel) 2021; 13:3510. [PMID: 34685269 PMCID: PMC8538282 DOI: 10.3390/polym13203510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 01/07/2023] Open
Abstract
Halloysite is a tubular clay nanomaterial of the kaolin group with a characteristic feature of oppositely charged outer and inner surfaces, allowing its selective spatial modification. The natural origin and specific properties of halloysite make it a potent material for inclusion in biopolymer composites with polysaccharides, nucleic acids and proteins. The applications of halloysite/biopolymer composites range from drug delivery and tissue engineering to food packaging and the creation of stable enzyme-based catalysts. Another important application field for the halloysite complexes with biopolymers is surface coatings resistant to formation of microbial biofilms (elaborated communities of various microorganisms attached to biotic or abiotic surfaces and embedded in an extracellular polymeric matrix). Within biofilms, the microorganisms are protected from the action of antibiotics, engendering the problem of hard-to-treat recurrent infectious diseases. The clay/biopolymer composites can be characterized by a number of methods, including dynamic light scattering, thermo gravimetric analysis, Fourier-transform infrared spectroscopy as well as a range of microscopic techniques. However, most of the above methods provide general information about a bulk sample. In contrast, the combination of electron microscopy with energy-dispersive X-ray spectroscopy allows assessment of the appearance and composition of biopolymeric coatings on individual nanotubes or the distribution of the nanotubes in biopolymeric matrices. In this review, recent contributions of electron microscopy to the studies of halloysite/biopolymer composites are reviewed along with the challenges and perspectives in the field.
Collapse
Affiliation(s)
- Kirill Cherednichenko
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas «Gubkin University», 65 Leninsky Prospekt, 119991 Moscow, Russia; (K.C.); (D.K.)
| | - Dmitry Kopitsyn
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas «Gubkin University», 65 Leninsky Prospekt, 119991 Moscow, Russia; (K.C.); (D.K.)
| | - Svetlana Batasheva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı, 18, 420008 Kazan, Republic of Tatarstan, Russia;
| | - Rawil Fakhrullin
- Department of Physical and Colloid Chemistry, Faculty of Chemical and Environmental Engineering, National University of Oil and Gas «Gubkin University», 65 Leninsky Prospekt, 119991 Moscow, Russia; (K.C.); (D.K.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı, 18, 420008 Kazan, Republic of Tatarstan, Russia;
| |
Collapse
|
33
|
Ruiz-Hitzky E, Ruiz-García C, Fernandes FM, Lo Dico G, Lisuzzo L, Prevot V, Darder M, Aranda P. Sepiolite-Hydrogels: Synthesis by Ultrasound Irradiation and Their Use for the Preparation of Functional Clay-Based Nanoarchitectured Materials. Front Chem 2021; 9:733105. [PMID: 34485248 PMCID: PMC8414812 DOI: 10.3389/fchem.2021.733105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022] Open
Abstract
Sepiolite and palygorskite fibrous clay minerals are 1D silicates featuring unique textural and structural characteristics useful in diverse applications, and in particular as rheological additives. Here we report on the ability of grinded sepiolite to generate highly viscous and stable hydrogels by sonomechanical irradiation (ultrasounds). Adequate drying of such hydrogels leads to low-density xerogels that show extensive fiber disaggregation compared to the starting sepiolite—whose fibers are agglomerated as bundles. Upon re-dispersion in water under high-speed shear, these xerogels show comparable rheological properties to commercially available defibrillated sepiolite products, resulting in high viscosity hydrogels that minimize syneresis. These colloidal systems are thus very interesting as they can be used to stabilize many diverse compounds as well as nano-/micro-particles, leading to the production of a large variety of composites and nano/micro-architectured solids. In this context, we report here various examples showing how colloidal routes based on sepiolite hydrogels can be used to obtain new heterostructured functional materials, based on their assembly to solids of diverse topology and composition such as 2D and 1D kaolinite and halloysite aluminosilicates, as well as to the 2D synthetic Mg,Al-layered double hydroxides (LDH).
Collapse
Affiliation(s)
| | - Cristina Ruiz-García
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.,Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Francisco M Fernandes
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.,Laboratoire de Chimie de la Matière Condensée de Paris, Faculté de Sciences, Sorbonne Université, Paris, France
| | - Giulia Lo Dico
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.,IMDEA Materials Institute, Getafe, Spain
| | - Lorenzo Lisuzzo
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.,Dipartimento di Fisica e Chimica - Emilio Segrè, Università degli Studi di Palermo, Palermo, Italy
| | - Vanessa Prevot
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain.,Université Clermont Auvergne, CNRS, ICCF, Clermont-Ferrand, France
| | - Margarita Darder
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
| | - Pilar Aranda
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Madrid, Spain
| |
Collapse
|
34
|
Incorporation of Biochar to Improve Mechanical, Thermal and Electrical Properties of Polymer Composites. Polymers (Basel) 2021; 13:polym13162663. [PMID: 34451201 PMCID: PMC8398134 DOI: 10.3390/polym13162663] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022] Open
Abstract
The strive for utilization of green fillers in polymer composite has increased focus on application of natural biomass-based fillers. Biochar has garnered a lot of attention as a filler material and has the potential to replace conventionally used inorganic mineral fillers. Biochar is a carbon rich product obtained from thermochemical conversion of biomass in nitrogen environment. In this review, current studies dealing with incorporation of biochar in polymer matrices as a reinforcement and conductive filler were addressed. Each study mentioned here is nuanced, while addressing the same goal of utilization of biochar as a filler. In this review paper, an in-depth analysis of biochar and its structure is presented. The paper explored the various methods employed in fabrication of the biocomposites. A thorough review on the effect of addition of biochar on the overall composite properties showed immense promise in improving the overall composite properties. An analysis of the possible knowledge gaps was also done, and improvements were suggested. Through this study we tried to present the status of application of biochar as a filler material and its potential future applications.
Collapse
|
35
|
Improving the properties of antifouling hybrid composites: The use of Halloysites as nano-containers in epoxy coatings. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Safdar R, Gnanasundaram N, Appusamy A, Thanabalan M. Synthesis, physiochemical properties, colloidal stability evaluation and potential of ionic liquid modified CS-TPP MPs in controlling the release rate of insulin. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Lebedev I, Lovskaya D, Mochalova M, Mitrofanov I, Menshutina N. Cellular Automata Modeling of Three-Dimensional Chitosan-Based Aerogels Fiberous Structures with Bezier Curves. Polymers (Basel) 2021; 13:polym13152511. [PMID: 34372113 PMCID: PMC8348900 DOI: 10.3390/polym13152511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
In this work, a cellular automata approach was investigated for modeling three-dimensional fibrous nanoporous aerogel structures. A model for the generation of fibrous structures using the Bezier curves is proposed. Experimental chitosan-based aerogel particles were obtained for which analytical studies of the structural characteristics were carried out. The data obtained were used to generate digital copies of chitosan-based aerogel structures and to assess the accuracy of the developed model. The obtained digital copies of chitosan-based aerogel structures will be used to create digital copies of aerogel structures with embedded active pharmaceutical ingredients (APIs) and further predict the release of APIs from these structures.
Collapse
|
38
|
Nanocomposite Materials Based on TMDCs WS 2 Modified Poly(l-Lactic Acid)/Poly(Vinylidene Fluoride) Polymer Blends. Polymers (Basel) 2021; 13:polym13132179. [PMID: 34209153 PMCID: PMC8272141 DOI: 10.3390/polym13132179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Novel multifunctional biopolymer blend nanocomposites composed of poly(vinylidene fluoride)(PVDF) and tungsten disulfide nanotubes (INT-WS2) that are layered transition metal dichalcogenides (TMDCs) were easily prepared by applying an economical, scalable, and versatile melt processing route. Furthermore, their synergistic effect to enhance the properties of poly(L-lactic acid) (PLLA) matrix was investigated. From morphological analysis, it was shown that the incorporation of 1D (INT)-WS2 into the immiscible PLLA/PVDF mixtures (weight ratios: 80/20, 60/40, 40/60, and 20/80) led to an improvement in the dispersibility of the PVDF phase, a reduction in its average domain size, and consequently a larger interfacial area. In addition, the nanoparticles INT-WS2 can act as effective nucleating agents and reinforcing fillers in PLLA/PVDF blends, and as such, greatly improve their thermal and dynamic-mechanical properties. The improvements are more pronounced in the ternary blend nanocomposites with the lowest PVDF content, likely due to a synergistic effect of both highly crystalline PVDF and 1D-TMDCs nano-additives on the matrix performance. Considering the promising properties of the developed materials, the inexpensive synthetic process, and the extraordinary properties of environmentally friendly and biocompatibe 1D-TMDCs WS2, this work may open up opportunities to produce new PLLA/PVDF hybrid nanocomposites that show great potential for biomedical applications.
Collapse
|
39
|
Injectable chitosan hydrogel embedding modified halloysite nanotubes for bone tissue engineering. Carbohydr Polym 2021; 269:118311. [PMID: 34294325 DOI: 10.1016/j.carbpol.2021.118311] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/31/2021] [Accepted: 06/03/2021] [Indexed: 11/23/2022]
Abstract
Low mechanical strength and untargeted osteoinduction of chitosan hydrogel limit its application for bone regeneration. This study aimed to develop an injectable chitosan hydrogel with enhanced mechanical strength and improved osteoinductivity for bone tissue engineering. For this purpose, chitosan-modified halloysite nanotubes (mHNTs) were synthesized first. Then, icariin as a bone inducer was loaded into mHNTs (IC@mHNTs), resulting in a sustained drug release system. Further, nanocomposite chitosan/mHNTs hydrogels were prepared by the sol-gel transition, leading to decreased gelation time and temperature and enhanced mechanical strength of the resulting scaffolds. The mesenchymal stem cells were encapsulated into the hydrogels, and in vitro viability assays showed scaffold biocompatibility. Moreover, embedded mHNTs or IC@mHNTs in the scaffold resulted in enhanced proliferation and bone differentiation of encapsulated cells. It was collectively demonstrated that the injectable in situ forming nanocomposite chitosan hydrogel loaded with IC@mHNTs is a promising candidate for bone regeneration.
Collapse
|
40
|
Synthesis, Structural, Morphological and Thermal Characterization of Five Different Silica-Polyethylene Glycol-Chlorogenic Acid Hybrid Materials. Polymers (Basel) 2021; 13:polym13101586. [PMID: 34069126 PMCID: PMC8156718 DOI: 10.3390/polym13101586] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 11/26/2022] Open
Abstract
The present study investigated the structure, morphology, thermal behavior, and bacterial growth analysis of novel three-component hybrid materials synthesized by the sol-gel method. The inorganic silica matrix was weakly bonded to the network of two organic components: a well-known polymer such as polyethylene glycol (PEG, average molar mass of about 4000 g/mol), and an antioxidant constituted by chlorogenic acid (CGA). In particular, a first series was made by a 50 wt% PEG-based (CGA-free) silica hybrid along with two 50 wt% PEG-based hybrids containing 10 and 20 wt% of CGA (denoted as SP50, SP50C10 and SP50C20, respectively). A second series contained a fixed amount of CGA (20 wt%) in silica-based hybrids: one was the PEG-free material (SC20) and the other two contained 12 and 50 wt% of PEG, respectively (SP12C20 and SP50C20, respectively), being the latter already included in the first series. The X-ray diffraction (XRD) patterns and scanning electron microscope (SEM) images of freshly prepared materials confirmed that all the materials were amorphous and homogeneous regardless of the content of PEG or CGA. The thermogravimetric (TG) analysis revealed a higher water content was adsorbed into the two component hybrids (SP50 and SC20) because of the availability of a larger number of H-bonds to be formed with water with respect to those of silica/PEG/CGA (SPC), where silica matrix was involved in these bonds with both organic components. Conversely, the PEG-rich materials (SP50C10 and SP50C20, both with 50 wt% of the polymer) retained a lower content of water. Decomposition of PEG and CGA occurred in almost the same temperature interval regardless of the content of each organic component. The antibacterial properties of the SiO2/PEG/CGA hybrid materials were studied in pellets using either Escherichia coli and Enterococcus faecalis, respectively. Excellent antibacterial activity was found against both bacteria regardless of the amount of polymer in the hybrids.
Collapse
|
41
|
Daniyal WMEMM, Fen YW, Saleviter S, Chanlek N, Nakajima H, Abdullah J, Yusof NA. X-ray Photoelectron Spectroscopy Analysis of Chitosan-Graphene Oxide-Based Composite Thin Films for Potential Optical Sensing Applications. Polymers (Basel) 2021; 13:478. [PMID: 33540931 PMCID: PMC7867321 DOI: 10.3390/polym13030478] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
In this study, X-ray photoelectron spectroscopy (XPS) was used to study chitosan-graphene oxide (chitosan-GO) incorporated with 4-(2-pyridylazo)resorcinol (PAR) and cadmium sulfide quantum dot (CdS QD) composite thin films for the potential optical sensing of cobalt ions (Co2+). From the XPS results, it was confirmed that carbon, oxygen, and nitrogen elements existed on the PAR-chitosan-GO thin film, while for CdS QD-chitosan-GO, the existence of carbon, oxygen, cadmium, nitrogen, and sulfur were confirmed. Further deconvolution of each element using the Gaussian-Lorentzian curve fitting program revealed the sub-peak component of each element and hence the corresponding functional group was identified. Next, investigation using surface plasmon resonance (SPR) optical sensor proved that both chitosan-GO-based thin films were able to detect Co2+ as low as 0.01 ppm for both composite thin films, while the PAR had the higher binding affinity. The interaction of the Co2+ with the thin films was characterized again using XPS to confirm the functional group involved during the reaction. The XPS results proved that primary amino in the PAR-chitosan-GO thin film contributed more important role for the reaction with Co2+, as in agreement with the SPR results.
Collapse
Affiliation(s)
| | - Yap Wing Fen
- Institute of Advanced Technology, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (W.M.E.M.M.D.); (S.S.)
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Silvan Saleviter
- Institute of Advanced Technology, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (W.M.E.M.M.D.); (S.S.)
| | - Narong Chanlek
- Synchrotron Light Research Institute, Maung, Nakhon Ratchasima 30000, Thailand; (N.C.); (H.N.)
| | - Hideki Nakajima
- Synchrotron Light Research Institute, Maung, Nakhon Ratchasima 30000, Thailand; (N.C.); (H.N.)
| | - Jaafar Abdullah
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (J.A.); (N.A.Y.)
| | - Nor Azah Yusof
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia; (J.A.); (N.A.Y.)
| |
Collapse
|
42
|
Pumchan A, Cheycharoen O, Unajak S, Prasittichai C. An oral biologics carrier from modified halloysite nanotubes. NEW J CHEM 2021. [DOI: 10.1039/d1nj00093d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Herein, we report the use of surface-modified halloysite as an effective oral vaccine carrier for Nile tilapia.
Collapse
Affiliation(s)
- Ansaya Pumchan
- Department of Biochemistry
- Faculty of Science
- Kasetsart University
- Bangkok 10900
- Thailand
| | - Orrapa Cheycharoen
- Department of Chemistry
- Faculty of Science
- Kasetsart University
- Bangkok 10900
- Thailand
| | - Sasimanas Unajak
- Department of Biochemistry
- Faculty of Science
- Kasetsart University
- Bangkok 10900
- Thailand
| | - Chaiya Prasittichai
- Department of Chemistry
- Faculty of Science
- Kasetsart University
- Bangkok 10900
- Thailand
| |
Collapse
|
43
|
Synergistic Antifungal Activity of Chitosan with Fluconazole against Candida albicans, Candida tropicalis, and Fluconazole-Resistant Strains. Molecules 2020; 25:molecules25215114. [PMID: 33153228 PMCID: PMC7663520 DOI: 10.3390/molecules25215114] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Few antifungal drugs are currently available, and drug-resistant strains have rapidly emerged. Thus, the aim of this study is to evaluate the effectiveness of the antifungal activity from a combinational treatment of chitosan with a clinical antifungal drug on Candida albicans and Candida tropicalis. (2) Methods: Minimum inhibitory concentration (MIC) tests, checkerboard assays, and disc assays were employed to determine the inhibitory effect of chitosan with or without other antifungal drugs on C. albicans and C. tropicalis. (3) Results: Treatment with chitosan in combination with fluconazole showed a great synergistic fungicidal effect against C. albicans and C. tropicalis, but an indifferent effect on antifungal activity when challenged with chitosan-amphotericin B or chitosan-caspofungin simultaneously. Furthermore, the combination of chitosan and fluconazole was effective against drug-resistant strains. (4) Conclusions: These findings provide strong evidence that chitosan in combination with fluconazole is a promising therapy against two Candida species and its drug-resistant strains.
Collapse
|
44
|
Abstract
There is a need for titanium (Ti), an antimicrobial implant coating that provides sustained protection against bacterial infection. Chitosan (CS) coatings, combined with halloysite nanotubes (HNTs), are an attractive solution due to the inherent biocompatibility of halloysite, its ability to provide sustained drug release, and the antimicrobial properties of CS. In this study, the electrodeposition (EPD) method was used to coat titanium foil with CS blended with zinc-coated HNTs (ZnHNTs) and pre-loaded with the antibiotic gentamicin. The CS-ZnHNTs-gentamycin sulfate (GS) coatings were characterized using scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray powder diffraction (XRD), X-ray fluorescence (XRF), Fourier-transform infrared spectroscopy (FTIR), and UV-visible spectroscopy. The coatings were further examined for their ability to sustain GS release, resist bacterial colonization and growth, and prevent biofilm formation. The CS-ZnHNTs-GS coatings were cytocompatible, exhibited significant antimicrobial properties, and supported pre-osteoblast cell proliferation. Hydroxyapatite also formed on the coatings after immersion in simulated body fluid. While the focus in this study was on zinc-coated HNTs doped into CS, our design offers tunability, as different metals can be coated onto the HNT surface and different drugs or growth factors loaded into the HNT lumen. Our results, and the potential for customization, suggest that these coatings have potential in the construction of an array of infection-resistant implant coatings.
Collapse
|
45
|
Kadam AA, Shinde SK, Ghodake GS, Saratale GD, Saratale RG, Sharma B, Hyun S, Sung JS. Chitosan-Grafted Halloysite Nanotubes-Fe 3O 4 Composite for Laccase-Immobilization and Sulfamethoxazole-Degradation. Polymers (Basel) 2020; 12:E2221. [PMID: 32992644 PMCID: PMC7600077 DOI: 10.3390/polym12102221] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 01/07/2023] Open
Abstract
A surface-engineered nano-support for enzyme laccase-immobilization was designed by grafting the surface of halloysite nanotubes (HNTs) with Fe3O4 nanoparticles and chitosan. Herein, HNTs were magnetized (HNTs-M) by a cost-effective reduction-precipitation method. The synthesized HNTs-M were grafted with 0.25%, 0.5%, 1%, and 2% chitosan (HNTs-M-chitosan), respectively. Synthesized HNTs-M-chitosan (0.25%), HNTs-M-chitosan (0.5%), HNTs-M-chitosan (1%) and HNTs-M-chitosan (2%) were linked with glutaraldehyde (GTA) for laccase immobilization. Among these formulations, HNTs-M-chitosan (1%) exhibited the highest laccase immobilization with 95.13% activity recovery and 100.12 mg/g of laccase loading. The optimized material was characterized thoroughly by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), X-ray powder diffraction (XRD), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM) analysis. The immobilized laccase (HNTs-M-chitosan (1%)-GTA-Laccase) exhibited higher pH, temperature, and storage stabilities. The HNTs-M-chitosan (1%)-GTA-Laccase possesses excellent reusability capabilities. At the end of 10 cycles of the reusability experiment, HNTs-M-chitosan (1%)-GTA-Laccase retained 59.88% of its initial activity. The immobilized laccase was utilized for redox-mediated degradation of sulfamethoxazole (SMX), resulting in 41%, 59%, and 62% degradation of SMX in the presence of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), guaiacol (GUA), and syringaldehyde (SA), respectively. Repeated SMX degradation (57.10% after the sixth cycle) confirmed the potential of HNTs-M-chitosan (1%)-GTA-Laccase for environmental pollutant degradation. Thus, we successfully designed chitosan-based, rapidly separable super-magnetic nanotubes for efficacious enhancement of laccase biocatalysis, which can be applied as nano-supports for other enzymes.
Collapse
Affiliation(s)
- Avinash A. Kadam
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea; (A.A.K.); (R.G.S.)
| | - Surendra K. Shinde
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggido 10326, Korea; (S.K.S.); (G.S.G.)
| | - Gajanan S. Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggido 10326, Korea; (S.K.S.); (G.S.G.)
| | - Ganesh D. Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Korea;
| | - Rijuta G. Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do 10326, Korea; (A.A.K.); (R.G.S.)
| | - Bharat Sharma
- Department of Materials Science and Engineering, Incheon National University, Academy Road Yeonsu, Incheon 22012, Korea;
| | - Seunghun Hyun
- Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Korea;
| | - Jung-Suk Sung
- Department of Life Science, College of Life Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyonggido 10326, Korea
| |
Collapse
|